
QR Code Model 2 Structure and Algorithms

Franck Jeannot

Montréal, Canada, June 2024, AB826, v1.0

Abstract

This article reviews the structures and algorithms used in QR codes.

Keywords: QR structure, Galois, Reed-Solomon, Bose-Chaudhuri-Hocquenghem
(BCH), fancyqr, ISO 18004

1. Introduction

A QR code (Quick Response code [1]) is a type of two-dimensional matrix
barcode, invented in 1994, by Japanese company Denso Wave1,initially for labelling
automobile parts [1].It can encode a wide variety of data types, including numeric,
alphabets, special characters and binary data as well. There are 40 QR versions in
the QR code standard ISO IEC 180042.QR codes were designed to allow high-speed
component scanning. The smallest square dot or pixel (series of black and white
squares) element of a QR code is called a module.

2. QR versions

Below, a QR Version 2 (25×25) made with pst-barcode [4] (Fig A, left) and a QR
made with fancyqr package mixed with github logo (Fig B, right) are displayed:

�

1a division of Denso, which is a subsidiary of the automobile company Toyota Motor Corporation
[2]

2forty sizes of QR Code symbols are referred to as Version 1, Version 2 ... Version 40,with
reference to section 7.3.1 Symbol Versions and sizes from ISO IEC 18004:2000 [3]

June 24, 2024

https://franckjeannot.com

For QR Code symbols, symbol versions are referred to in the form Version V-E
where V identifies the version number (1 to 40) and E indicates the error correction
level (L(low), M(medium), Q(quality), H(high)3 . There are 4 levels of Reed–
Solomon error correction, L (7%), M (15%), Q (25%), H(30%). For Micro QR
code symbols, symbols versions are referred to in the form MV-E where the letter
M indicates the Micro QR Code format and V (with arange of 1 to 4) and E (with
values L, M and Q). The largest possible code, Version 40, allowed under the QR
code standard is a matrix of 177 × 177 pixels (or modules), and the smallest, Version
1, is 21 × 21 pixels. The version of the code gives its size, as the code matrix will
be a square of 17 + Version * 4 modules.. Each higher version number comprises 4
additional modules per side. Like with other types of bar codes, it is recommended
to have an empty area around the graphic, which makes it easier for devices to read
the bar code. This quiet area is ideally 4 modules wide [6].

To simplify the determination of the size of a QR code, it depends on the desired
Error Correction Capability (ECC), as well as the size and type of data intended
for inclusion in the QR code. By understanding the type of data (Numeric, Al-
phanumeric, Binary, Kanji), its size, and the chosen ECC level, we can ascertain the
appropriate Version of the QR code. A simplified table example:

Version Modules
ECC
Level

Data bits
(mixed)

Numeric
Alphanu-

meric
Binary

1 21× 21

L
M
Q
H

152
128
104
72

41
34
27
17

25
20
16
10

17
14
11
7

2 25× 25

L
M
Q
H

272
224
176
128

77
63
48
34

47
38
29
20

32
26
20
14

Figure (1): Simplified table (without Kanji) to determine the version of QR [7].

3paragraph 5.3.3 from ISO18004:2015 [5]

2

3. QR Symbol Structure and components

Each QR Code symbol shall be constructed of nominally square modules set out in
a regular square array and shall consist of a encoding region and function patterns,
namely finder (Finder Pattern)(FIP), separator, timing patterns, and alignment
patterns. Herebelow is a Version 2 structure (25 modules X 25 modules) (simplified
regarding the Data Units and EC codewords that fill entirely the symbol):

Legend (version 2-M symbol)

Data Codewords

Central Alignment Pattern

Timing Patterns

Format Information

Position Detection corner Outer marker

Remainder bits or Redundant Data

EC Codewords

Dark module position (4V +9,8)

14 13 12 11 10 9 8 8

14
13
12
11
10
9
8

01234567

0
1
2
3
4
55

6
7

D1

D2

D3

D4

D8

D7

D6

D5

D9

D10

D11

D18

RB

E16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
1
2
34
5
6
7
8
9

Figure (2): Standard QR code structure main components Version 2-M (medium)

QR code Model 1 and 2 have a square shape and on its three corners that are
typically square-shaped patterns—finder patterns (FP), which are used to locate the
code and to determine its dimensions and rotation [8]. Essential components:

1. Timing patterns (TP): they interconnect finder patterns and are formed by
sequence of alternating dark and light modules and used to determine the size
of a module, the number of rows and columns, and possible distortion of a code

2. Format information: contains additional information such as used error correc-
tion level (4 options) or a mask patterns number (7 options), which are required
for decoding a QR Code.

3

3. Quiet zone: blank margin around the QR code
4. Extension patterns: markers for the alignment of the QR code (model 1)
5. Alignment patterns: markers for the alignment of the QR code (models 2
6. Version information: data giving the QR code size, for instance 25 x 25 modules

(models 2 and 2005)

4. QR Format information and BCH algorithm

The format information, as specified by ISO 18004, includes a 15-bit sequence
with 5 data bits and 10 Bose-Chaudhuri-Hocquenghem (BCH) error correction
bits calculated using the (15, 5) BCH code.

Error Correction Level Binary Indicator
L (Low) 01

M (Medium) 00
Q (Quartile) 11

H (High) 10

Table 1: Error Correction Levels and their Binary Indicators in QR Codes

In a QR code model 2, the Format Information is repeated twice for redundancy
and improved readability (refer to Figure (2): pink and blue Format information
zones). It is placed in two locations: a. Around the top-left finder pattern b. Split
between the bottom-left and top-right finder patterns

Reading the Format Information:
To identify which zones contain what information:
The complete 15-bit sequence can be read from the top-left zone. The bottom-left
and top-right zones together form a second copy of the same 15-bit sequence. Both
copies are XORed with a fixed mask pattern to improve readability. The QR code
reader software uses both copies of the Format Information for verification. If one
copy is damaged or unreadable, the other can be used to retrieve the necessary
information.

5 Data Information Bits 10 BCH Error Correction / parity Bits
Error Correction Level Mask Pattern

(2 bits) (3 bits)
XXXXX XXXXXXXXXX

Table 2: 15-bit Format Information sequence in QR code as (15,5) BCH code

4

A (15,5) BCH code is an error-correcting code that encodes 5 data bits into a
15-bit codeword [9]. Let us implement a simplified Python function for the generator
polynomial for the (15,5) BCH code:

1 def bch_generator(data_bits):

2 # Generator polynomial coefficients for g(x) = x^10 + x^8 + x^5 + x

^4 + x^2 + x + 1

3 generator_poly = [1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1]

4

5 # Append 10 zeros to the data_bits (since the generator polynomial

is of degree 10)

6 data_bits_extended = data_bits + [0] * 10

7

8 # Perform polynomial division (modulo 2)

9 for i in range(len(data_bits)):

10 if data_bits_extended [i] == 1: # Only if the bit is 1, we

perform XOR with generator_poly

11 for j in range(len(generator_poly)):

12 data_bits_extended [i + j] ^= generator_poly [j]

13

14 # The remainder is the parity bits

15 parity_bits = data_bits_extended [-10:]

16

17 # The final codeword is the concatenation of the original data_bits

and the parity_bits

18 codeword = data_bits + parity_bits

19

20 return codeword

21

22 # Example usage

23 data_bits = [1, 0, 1, 1, 0] # Example 5 data bits

24 codeword = bch_generator(data_bits)

25 print("data_bits:", data_bits)

26 print("Codeword:", codeword)

Listing 1: Python function for the generator polynomial for the BCH code

1 $ python bch_generator.py

2 data_bits: [1, 0, 1, 1, 0]

3 Codeword: [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]

Listing 2: Python function for the generator polynomial for the BCH code - results

The generator polynomial for the (15,5) BCH code is:

g(x) = x10 + x8 + x5 + x4 + x2 + x+ 1

5

The generator polynomial is used to generate the 15-bit codewords from the 5
data bits by multiplying the data polynomial by g(x). The resulting 15-bit code-
word includes 5 data bits and 10 parity bits, which are used for error detection and
correction.

5. QR models and history

QR Code is an International Standard ISO/IEC 18004. QR Code is only used
by the GS1 system to encode the GS1 Digital Link URI syntax. For full technical
aspects of QR Code, see ISO/IEC 18004 [10].
Models:

1. QR Code Model 1 was the original specification for QR Code and is described
in AIM ITS 97-001 International Symbology Specification-QR Code

2. QR Code Model 2 was an enhanced form of the symbology with additional
features (primariliy the addition of alignement patterns to assist navigation
in larger symbols), and was the basis of the first edition of version ISO/IEC
18004:2000 [3] then updated with ISO/IEC 18004:2015.

6. QR hexadecimal versions

The hexadecimal codes in the extract below [11] represents the raw version bits
that specify different versions of QR codes, specifically for versions 7 through 40. In
QR code technology, the version of a QR code determines its size and data capacity.
Versions range from 1 to 40, with higher versions corresponding to larger QR codes
that can store more data. Each hexadecimal value in the array encodes the version
information for a specific QR code version:

1 /**

2 * See ISO 18004:2006 Annex D.

3 * Element i represents the raw version bits that specify version i +

7

4 * https :// github.com/zxing/zxing/blob/master/core/src/main/java/com/

google/zxing/qrcode/decoder/Version.java

5 */

6 private static final int[] VERSION_DECODE_INFO = {

7 0x07C94 , 0x085BC , 0x09A99 , 0x0A4D3 , 0x0BBF6 ,

8 0x0C762 , 0x0D847 , 0x0E60D , 0x0F928 , 0x10B78 ,

9 0x1145D , 0x12A17 , 0x13532 , 0x149A6 , 0x15683 ,

10 0x168C9 , 0x177EC , 0x18EC4 , 0x191E1 , 0x1AFAB ,

11 0x1B08E , 0x1CC1A , 0x1D33F , 0x1ED75 , 0x1F250 ,

12 0x209D5 , 0x216F0 , 0x228BA , 0x2379F , 0x24B0B ,

6

13 0x2542E , 0x26A64 , 0x27541 , 0x28C69

14 };

Listing 3: zxing/qrcode/decoder/Version.java extract

The index of each value in the array corresponds to the QR code version minus 7.
For example, the first value (0x07C94) represents version 7, the second (0x085BC)
represents version 8, and so on. These hexadecimal values are used in the process of
decoding QR codes. When a QR code reader scans a code, it uses these values to
determine the version of the QR code being read.

7. Alignements patterns

QR Code alignment patterns are defined in the table of ISO/IEC 18004:2000
Annex E [12]. In order to calculate the positions of the coordinates we can use the
provided below python function for an approximation depending on versions. The
coordinates provide the center of each alignement pattern.

We consider n as the width of the QR code, m+ 1 is the length of the sequence,
the 3 rd formula is from the ideal condition n = 6.5 · 2 +md, and the name of the
c means a correction (based on annex E of ISO IEC 18004:2015). Each row is an
arithmetic sequence except the first element 6. The difference d of this sequence is a
function of the version v :

n = 4v + 17

m = ⌊v/7⌋+ 1

d = 2

⌈

⌈(n− 13)/m− 1/2⌉

2

⌉
(1)

1 def get_alignment_positions (version):

2 # Interpolate end points to get point

3 # Round to nearest int by adding half

4 # of divisor before division

5 # Floor -divide by number of intervals

6 # to complete interpolation

7 # Round down to even integer

8 positions = []

9 if version > 1:

10 n_patterns = version // 7 + 2

11 first_pos = 6

12 positions.append(first_pos)

7

zxing/qrcode/decoder/Version.java

13 matrix_width = 4 * version + 17

14 last_pos = matrix_width - 1 - first_pos

15 second_last_pos = (

16 (first_pos + last_pos * (n_patterns - 2)

17 + (n_patterns - 1) // 2)

18

19 // (n_patterns - 1)

20

21) & -2

22 pos_step = last_pos - second_last_pos

23 second_pos = last_pos - (n_patterns - 2) * pos_step

24 positions.extend(range(second_pos , last_pos + 1, pos_step))

25 return positions

26

27 for version in range(1, 40 + 1): # 1 to 40 inclusive

28 print("V%d: %s" % (version , get_alignment_positions (version)))

Listing 4: Python function to get center alignement coordinates

1 $ python calculating -the -position -of -qr -code -alignment -patterns.py

2 1: []

3 V2: [6, 18]

4 V3: [6, 22]

5 V4: [6, 26]

6 V5: [6, 30]

7 V6: [6, 34]

8

9 V38: [6, 32, 58, 84, 110, 136, 162]

10 V39: [6, 26, 54, 82, 110, 138, 166]

11 V40: [6, 30, 58, 86, 114, 142, 170]

Listing 5: Python approximation function to get center alignement coordinates

For the Version 2, the numbers are val1=6 and val2=18. This means that the
alignment patterns are to be placed at (6, 6), (6, 18), (18, 6) and (18, 18). However,
we do not put alignment patterns on top of finder patterns or separators, so for a
version 2 we will just consider a center with coordinates (18,18):

Version Va1 Val2 (X,Y) coord.
QR Version 2 6 18 (18,18)
QR Version 3 6 22 ..

Table 3: QR Code Versions and Center Module Positions

8

8. QR and related algorithms

Various algorithms are used to implement QR codes or analyze related topics.
Some important algorithms include:

1. Viola-James’ object detection framework (as used in article "Fast Component-
Based QR Code Detection in Arbitrarily Acquired Images"

2. Reed-Solomon algorithm for error corrections
3. Bose-Chaudhuri-Hocquenghem (BCH) for QR data processing
4. Berlekamp-Massey algorithm for finding error locator polynomials [13]
5. Lay-Wang-2015 for Rectification of QR-Code Images Using the Parametric

Cylindrical Surface Model (example on bottles) [14]
6. Base 45 Data encoding (rfc9285) [15] for more compact QR code encoding
7. Bresenham algorithm [16]
8. Peterson-Gorenstein-Zierler Algorithm (refering to BCH) [17]

8.1. Viola-Jones framework

The Viola-Jones framework (2001) [18] detects objects by extracting Haar-like fea-
tures, which are digital image features resembling Haar wavelets 4. It uses integral
images for quick feature calculation and a cascade of classifiers to efficiently discard
non-object regions, ensuring rapid and accurate object detection. This method was
applied in (Belussi, 2012) in article "Fast Component-Based QR Code Detection in
Arbitrarily Acquired Images" [20] code detection.

8.2. Bose-Chaudhuri-Hocquenghem (BCH)

Bose-Chaudhuri-Hocquenghem [21] form a class of cyclic error-correcting codes
that are constructed using polynomials over a finite field (also called a Galois field).
BCH codes in QR codes correct errors [3] by encoding data with extra parity bits,
ensuring accurate data retrieval despite possible corruption. Advanced details on
BCH can be found in "Error Control Coding" by (Lin, 2004) [22].

4Orthogonal functions forming basis for wavelet transformations in signal processing [19]

9

9. Reed-Solomon Error Correction

Reed-Solomon error correction is a powerful method used in QR codes to ensure
data integrity. Reed-Solomon codes are a group of error-correcting codes that were
introduced by Irving S. Reed and Gustave Solomon in 1960 [23]. They are used
to detect and correct multiple symbol errors. Reed-Solomon codes are particularly
useful in digital communications and storage, such as CDs, DVDs, QR codes, and
data transmission technologies.

10. Galois field

A Galois field , named after the mathematician Évariste Galois [24], is a finite field
containing a set number of elements where arithmetic operations such as addition,
subtraction, multiplication, and division (except by zero) are closed within the set.
Galois fields are denoted as Fq, where q is a power of a prime number.

11. Reed-Solomon Algorithm Essentials

11.1. Key Concepts

1. Symbols and Codewords: Reed-Solomon codes work with symbols, which
are groups of bits. 2. A codeword is a sequence of symbols. 3. Field: The algorithm
operates over a finite field, typically denoted as F2m

5, where m is a positive integer.
4. Generator Polynomial: The generator polynomial g(x) is used to generate
codewords.

Encoding Process

To encode a message using Reed-Solomon codes, the message is represented as a
polynomial m(x) and then multiplied by the generator polynomial g(x) to produce
the encoded message c(x).

c(x) = m(x) · g(x)

5
Fq represents a finite field, also known as a Galois field, where q is a power of a prime

number. Specifically, F2m denotes a finite field with 2
m elements, used for efficient arithmetic in

coding theory and cryptography.

10

Practical example for encoding

We suppose that we have a message represented by the polynomial m(x) = x2+1
and a generator polynomial g(x) = x2 + x+ 1.

• m(x) = 1 · x2 + 0 · x+ 1

• g(x) = 1 · x2 + 1 · x+ 1

The codeword polynomial c(x) is calculated as:

c(x) = m(x) · g(x) = (x2 + 1) · (x2 + x+ 1)

Expanding this product:

c(x) = x4 + x3 + x2 + x2 + x+ 1 = x4 + x3 + 2x2 + x+ 1

Since we are in a finite field F2, where 2 ≡ 0:

c(x) = x4 + x3 + x+ 1

So, the codeword polynomial c(x) is x4 + x3 + x+ 1.

Decoding Process

The decoding process involves finding the error locations and magnitudes. The
key equations used in the decoding process include the Syndrome polynomial S(x)
and the Error locator polynomial σ(x).

1. Syndrome Polynomial: The syndrome polynomial is calculated using the
received polynomial r(x) and is defined as:

S(x) = r(αi) for i = 0, 1, . . . , 2t− 1

where α is a primitive element of the finite field, and t is the number of errors
the code can correct.

2. Error Locator Polynomial: The error locator polynomial σ(x) is found
using the Berlekamp-Massey algorithm or the Euclidean algorithm. It is used to
locate the positions of errors in the received message.

σ(x) =
t

∏

i=1

(1− xαi)

Once the error locations are identified, the error values can be determined, and
the original message can be reconstructed.

11

12. Reed-Solomon examples

We define a simplified algorithm as below:

1/ Generator Polynomial - Generates the generator polynomial g(x) needed for en-
coding
2/ Initialization - Sets up the Galois Field by initializing the exponential and loga-
rithm tables
3/ Generator Polynomial Generates the generator polynomial g(x) needed for encod-
ing
4/ Encode Message - Encodes the message polynomial m(x) by multiplying it with
xt and computing the remainder when divided by g(x)
5/ Output Codeword - Combines the message and parity symbols to form the final
codeword c(x).

We can then define corresponding functions:

Function Details
gf_poly_mul Multiply two polynomials in GF(28)
gf_poly_add(p, q) Add two polynomials in GF(28)
rs_generator_poly(nsym) Generate a generator polynomial for RS encoding.
rs_encode_msg(msg_in,
nsym)

Encode a message using Reed-Solomon codes.

Table 4: Function Descriptions for Reed-Solomon simplified Algorithm example

Generator Polynomial: g(x) =
∏t−1

i=0
(x+ αi)

Codeword Polynomial: c(x) = m(x) · xt + r(x), r(x) = (m(x) · xt) mod g(x)

12

Algorithm 1 Reed-Solomon Encoding simplified Algorithm example

1: function gf_poly_mul(p, q)
2: r ← [0]× (len(p) + len(q)− 1)
3: for j = 0 to len(q)− 1 do
4: for i = 0 to len(p)− 1 do
5: r[i+ j]← r[i+ j]⊕ gf_mul(p[i], q[j])
6: end for
7: end for
8: return r
9: end function

10: function gf_poly_add(p, q)
11: r ← [0]×max(len(p), len(q))
12: for i = 0 to len(p)− 1 do
13: r[i+ len(r)− len(p)]← p[i]
14: end for
15: for i = 0 to len(q)− 1 do
16: r[i+ len(r)− len(q)]← r[i+ len(r)− len(q)]⊕ q[i]
17: end for
18: return r
19: end function
20: function rs_generator_poly(nsym)
21: g ← [1]
22: for i = 0 to nsym− 1 do
23: g ← gf_poly_mul(g, [1, gf_exp[i]])
24: end for
25: return g
26: end function
27: function rs_encode_msg(msg_in, nsym)
28: init_tables()
29: gen← rs_generator_poly(nsym)
30: msg_out← [0]× (len(msg_in) + nsym)
31: msg_out[0 : len(msg_in)]← msg_in
32: for i = 0 to len(msg_in)− 1 do
33: coef ← msg_out[i]
34: if coef 6= 0 then
35: for j = 0 to len(gen)− 1 do
36: msg_out[i+ j]← msg_out[i+ j]⊕ gf_mul(gen[j], coef)
37: end for
38: end if
39: end for
40: msg_out[0 : len(msg_in)]← msg_in
41: return msg_out
42: end function

13

Simplified implementation of the Reed-Solomon algorithm in Python. This func-
tion focuses on encoding a message with a given generator polynomial and a finite
field. For simplicity, this code will work in GF (28) using precomputed tables for
multiplication and logarithms

1 # Precomputed tables for GF(2^8)

2 gf_exp = [0] * 512

3 gf_log = [0] * 256

4

5 def init_tables (prim=0x11d):

6 """ Initialize the exponential and logarithm tables for GF(2^8).

"""

7 x = 1

8 for i in range (255):

9 gf_exp[i] = x

10 gf_log[x] = i

11 x <<= 1

12 if x & 0x100:

13 x ^= prim

14 for i in range (255, 512):

15 gf_exp[i] = gf_exp[i - 255]

16

17 def gf_mul(x, y):

18 """ Multiply two numbers in GF(2^8). """

19 if x == 0 or y == 0:

20 return 0

21 return gf_exp[gf_log[x] + gf_log[y]]

22

23 def gf_poly_mul (p, q):

24 """ Multiply two polynomials in GF(2^8). """

25 r = [0] * (len(p) + len(q) - 1)

26 for j in range(len(q)):

27 for i in range(len(p)):

28 r[i + j] ^= gf_mul(p[i], q[j])

29 return r

30

31 def gf_poly_add (p, q):

32 """ Add two polynomials in GF(2^8). """

33 r = [0] * max(len(p), len(q))

34 for i in range(len(p)):

35 r[i + len(r) - len(p)] = p[i]

36 for i in range(len(q)):

37 r[i + len(r) - len(q)] ^= q[i]

38 return r

39

40 def rs_generator_poly(nsym):

14

41 """ Generate a generator polynomial for RS encoding. """

42 g = [1]

43 for i in range(nsym):

44 g = gf_poly_mul (g, [1, gf_exp[i]])

45 return g

46

47 def rs_encode_msg(msg_in , nsym):

48 """ Encode a message using Reed -Solomon codes. """

49 init_tables ()

50 gen = rs_generator_poly(nsym)

51 msg_out = [0] * (len(msg_in) + nsym)

52 msg_out [:len(msg_in)] = msg_in

53

54 for i in range(len(msg_in)):

55 coef = msg_out[i]

56 if coef != 0:

57 for j in range(len(gen)):

58 msg_out[i + j] ^= gf_mul(gen[j], coef)

59

60 msg_out [:len(msg_in)] = msg_in

61 return msg_out

62

63 # Example usage

64 if __name__ == "__main__":

65 message = [32, 91, 11, 98, 56] # example message

66 nsym = 10 # number of error correction symbols

67 encoded_message = rs_encode_msg(message , nsym)

68 print("Original message:", message)

69 print("Number of error correction symbols:", nsym)

70 print("Encoded message:", encoded_message)

Listing 6: Simplified implementation of the Reed-Solomon algorithm

Then we get:

1 $ python galois.py

2 Original message: [32, 91, 11, 98, 56]

3 Number of error correction symbols: 10

4 Encoded message: [32, 91, 11, 98, 56, 107, 33, 43, 244, 102, 30, 52,

87, 107, 207]

Listing 7: Simplified implementation of the Reed-Solomon algorithm - exampls results

15

References

[1] Wikipedia, QR code.
URL https://en.wikipedia.org/wiki/QR_code

[2] qrworld.
URL https://www.britannica.com/technology/QR-Code

[3] iso18004-2000, International Organization for Standardization, ISO/IEC
Standard 18004: Information Technology – Automatic Identification and Data
Capture Techniques – QR Code Bar Code Symbology Specification, Geneva,
Switzerland, 2000.
URL https://github.com/yansikeim/QR-Code/blob/master/ISO%20IEC

%2018004%202015%20Standard.pdf

[4] Terry Burton, Herbert Voß, pst-barcode, A PSTricks package for drawing
barcodes; v.0.19 .
URL https://ctan.mirror.globo.tech/graphics/pstricks/contrib/

pst-barcode/doc/pst-barcode-doc.pdf

[5] International Organization for Standardization, Information technology – auto-
matic identification and data capture techniques – qr code bar code symbology
specification, International Standard ISO/IEC 18004:2015, ISO/IEC, Geneva,
Switzerland (September 2015).
URL https://www.iso.org/standard/62021.html

[6] QR (Quick Response) codes.
URL https://www.prepressure.com/library/technology/qr-code

[7] Information capacity and versions of the QR Code.
URL https://www.qrcode.com/en/about/version.html

[8] L. Karrach, E. Pivarciova, P. Božek, Identification of qr code perspective
distortion based on edge directions and edge projections analysis, Journal of
Imaging 6 (2020) 67. doi:10.3390/jimaging6070067.
URL https://www.researchgate.net/publication/342859848_

Identification_of_QR_Code_Perspective_Distortion_Based_on_Edge_

Directions_and_Edge_Projections_Analysis

[9] BCH codes.
URL https://web.ntpu.edu.tw/~yshan/BCH_code.pdf

16

https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code
https://www.britannica.com/technology/QR-Code
https://www.britannica.com/technology/QR-Code
https://github.com/yansikeim/QR-Code/blob/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://github.com/yansikeim/QR-Code/blob/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://github.com/yansikeim/QR-Code/blob/master/ISO%20IEC%2018004%202015%20Standard.pdf
https://ctan.mirror.globo.tech/graphics/pstricks/contrib/pst-barcode/doc/pst-barcode-doc.pdf
https://ctan.mirror.globo.tech/graphics/pstricks/contrib/pst-barcode/doc/pst-barcode-doc.pdf
https://ctan.mirror.globo.tech/graphics/pstricks/contrib/pst-barcode/doc/pst-barcode-doc.pdf
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://www.prepressure.com/library/technology/qr-code
https://www.prepressure.com/library/technology/qr-code
https://www.qrcode.com/en/about/version.html
https://www.qrcode.com/en/about/version.html
https://www.researchgate.net/publication/342859848_Identification_of_QR_Code_Perspective_Distortion_Based_on_Edge_Directions_and_Edge_Projections_Analysis
https://doi.org/10.3390/jimaging6070067
https://www.researchgate.net/publication/342859848_Identification_of_QR_Code_Perspective_Distortion_Based_on_Edge_Directions_and_Edge_Projections_Analysis
https://www.researchgate.net/publication/342859848_Identification_of_QR_Code_Perspective_Distortion_Based_on_Edge_Directions_and_Edge_Projections_Analysis
https://www.researchgate.net/publication/342859848_Identification_of_QR_Code_Perspective_Distortion_Based_on_Edge_Directions_and_Edge_Projections_Analysis
https://web.ntpu.edu.tw/~yshan/BCH_code.pdf
https://web.ntpu.edu.tw/~yshan/BCH_code.pdf

[10] gs1ca.org, Barcoding for Designers, Printers and Packagers.
URL https://gs1ca.org/gs1ca-components/documents/

Barcoding-for-Designers-Printers-and-Packagers.pdf

[11] QR decoder library.
URL https://github.com/zxing/zxing/blob/master/core/src/main/java/

com/google/zxing/qrcode/decoder/Version.java

[12] Alignment pattern locations.
URL https://www.thonky.com/qr-code-tutorial/

alignment-pattern-locations

[13] QR decoder library.
URL https://github.com/dlbeer/quirc/blob/master/lib/decode.c

[14] K.-T. Lay, L.-J. Wang, C.-H. Wang, Rectification of qr-code im-
ages using the parametric cylindrical surface model, in: 2015 Interna-
tional Symposium on Next-Generation Electronics (ISNE), IEEE, 2015.
doi:10.1109/isne.2015.7132033.

[15] Base45 Data Encoding.
URL https://datatracker.ietf.org/doc/html/rfc9285

[16] Wikipedia, Bresenham’s algorithm.
URL https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

[17] BCH codes.
URL https://simoneparisotto.com/math/misc/qrcode/qrcode.pdf

[18] P. A. Viola, M. J. Jones, Rapid object detection using a boosted cascade of sim-
ple features., in: Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2001), IEEE Computer
Society, 2001, pp. 511–518. doi:10.1109/CVPR.2001.990517.
URL https://www.researchgate.net/publication/3940582_Rapid_Object_

Detection_using_a_Boosted_Cascade_of_Simple_Features

[19] A. Haar, Theorie der orthogonalen Funktionensysteme, Giesecke & Devrient,
1910.

[20] L. F. F. Belussi, N. S. T. Hirata, Fast component-based qr code detection in
arbitrarily acquired images, Journal of Mathematical Imaging and Vision 45 (3)
(2012) 277–292. doi:10.1007/s10851-012-0355-x.

17

https://gs1ca.org/gs1ca-components/documents/Barcoding-for-Designers-Printers-and-Packagers.pdf
https://gs1ca.org/gs1ca-components/documents/Barcoding-for-Designers-Printers-and-Packagers.pdf
https://gs1ca.org/gs1ca-components/documents/Barcoding-for-Designers-Printers-and-Packagers.pdf
https://github.com/zxing/zxing/blob/master/core/src/main/java/com/google/zxing/qrcode/decoder/Version.java
https://github.com/zxing/zxing/blob/master/core/src/main/java/com/google/zxing/qrcode/decoder/Version.java
https://github.com/zxing/zxing/blob/master/core/src/main/java/com/google/zxing/qrcode/decoder/Version.java
https://www.thonky.com/qr-code-tutorial/alignment-pattern-locations
https://www.thonky.com/qr-code-tutorial/alignment-pattern-locations
https://www.thonky.com/qr-code-tutorial/alignment-pattern-locations
https://github.com/dlbeer/quirc/blob/master/lib/decode.c
https://github.com/dlbeer/quirc/blob/master/lib/decode.c
https://doi.org/10.1109/isne.2015.7132033
https://datatracker.ietf.org/doc/html/rfc9285
https://datatracker.ietf.org/doc/html/rfc9285
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://simoneparisotto.com/math/misc/qrcode/qrcode.pdf
https://simoneparisotto.com/math/misc/qrcode/qrcode.pdf
https://www.researchgate.net/publication/3940582_Rapid_Object_Detection_using_a_Boosted_Cascade_of_Simple_Features
https://doi.org/10.1109/CVPR.2001.990517
https://www.researchgate.net/publication/3940582_Rapid_Object_Detection_using_a_Boosted_Cascade_of_Simple_Features
https://www.researchgate.net/publication/3940582_Rapid_Object_Detection_using_a_Boosted_Cascade_of_Simple_Features
https://doi.org/10.1007/s10851-012-0355-x

[21] BCH code.
URL https://en.wikipedia.org/wiki/BCH_code

[22] S. Lin, D. J. Costello, Error Control Coding: Fundamentals and Applications,
2nd Edition, Pearson-Prentice Hall, Upper Saddle River, NJ, 2004.

[23] Reed, Irving S. and Solomon, Gustave, Polynomial codes over certain finite
fields, Journal of the Society for Industrial and Applied Mathematics 8 (2)
(1960) 300–304.
URL https://sites.math.rutgers.edu/~zeilberg/akherim/reed.pdf

[24] Galois, Évariste and Liouville, Joseph, Oeuvres mathématiques d’Évariste Ga-
lois, Bachelier, Paris, 1846.
URL https://gallica.bnf.fr/ark:/12148/bpt6k9800489w/f22.item

18

https://en.wikipedia.org/wiki/BCH_code
https://en.wikipedia.org/wiki/BCH_code
https://sites.math.rutgers.edu/~zeilberg/akherim/reed.pdf
https://sites.math.rutgers.edu/~zeilberg/akherim/reed.pdf
https://gallica.bnf.fr/ark:/12148/bpt6k9800489w/f22.item
https://gallica.bnf.fr/ark:/12148/bpt6k9800489w/f22.item

	Introduction
	QR versions
	QR Symbol Structure and components
	QR Format information and BCH algorithm
	QR models and history
	QR hexadecimal versions
	Alignements patterns
	QR and related algorithms
	Viola-Jones framework
	Bose-Chaudhuri-Hocquenghem (BCH)

	Reed-Solomon Error Correction
	Galois field
	Reed-Solomon Algorithm Essentials
	Key Concepts

	Reed-Solomon examples

