
ChromaDB par la pratique : comment une base de
données vectorielle transforme du texte en embeddings

recherchables

Franck Jeannot
Montréal, Canada, AC862, Février 2025

Résumé

Les bases de données vectorielles sont un pilier des pipelines modernes de
génération augmentée par récupération (RAG), mais leur fonctionnement in-
terne reste opaque pour de nombreux praticiens. Ce tutoriel décortique Chro-
maDB — une base de données vectorielle open-source et embarquable — de-
puis l’API Python jusqu’au moteur d’inférence ONNX qui convertit du texte
brut en vecteurs de 384 dimensions. À partir d’un programme minimal de 18
lignes indexant 56 phrases de politiques commerciales, nous traçons chaque
étape du pipeline : tokenisation, passe avant du transformeur, mean poo-
ling, normalisation L2, indexation HNSW et recherche par distance cosinus.
Chaque étape est illustrée par du code concret, des sorties intermédiaires et
des définitions mathématiques, de sorte qu’un lecteur ayant des connaissances
de base en Python puisse reproduire et étendre les expériences. Nous mon-
trons également comment remplacer le modèle anglais par défaut par un en-
codeur de phrases multilingue (paraphrase-multilingual-MiniLM-L12-v2)
pour indexer et interroger des documents en français, y compris la recherche
interlingue où des requêtes en anglais retrouvent des résultats pertinents en
français. Nous discutons enfin du correctif de compatibilité Python 3.14 né-
cessaire pour les versions actuelles de ChromaDB.

Keywords: base de données vectorielle, embeddings, ChromaDB, HNSW,
sentence-transformers, ONNX, RAG, similarité cosinus, embeddings
multilingues, recherche interlingue

1. Introduction

Les applications basées sur les grands modèles de langage (LLM) ont
fréquemment besoin de retrouver des documents pertinents avant de géné-
rer une réponse, un patron connu sous le nom de génération augmentée par
récupération (RAG) [1]. L’étape de récupération nécessite une structure de
données efficace capable, à partir d’une phrase de requête, de retourner les
k documents les plus sémantiquement similaires en temps sous-linéaire. Les
bases de données vectorielles remplissent ce rôle en stockant des représenta-
tions vectorielles de haute dimension du texte et en répondant à des requêtes
de plus proches voisins.

ChromaDB 1 est une base de données vectorielle open-source et embar-
quable, écrite en Python et en Rust. Sa caractéristique distinctive pour les
débutants est un pipeline d’embedding sans configuration : un seul appel à
collection.add(documents=...) tokenise automatiquement le texte, exé-
cute un modèle transformeur, normalise les vecteurs résultants et les indexe,
le tout sans que l’utilisateur ait à télécharger un modèle ou écrire du code de
machine learning.

Cet article répond à trois questions :
1. Que se passe-t-il, étape par étape, quand ChromaDB convertit une

phrase en vecteur ?
2. Comment ces vecteurs sont-ils stockés et recherchés efficacement ?
3. Comment écrire un programme RAG complet et fonctionnel ?

Les sources et scripts sont disponibles : https://github.com/blue101
010/chromadb-article/tree/main

1. https://www.trychroma.com

2

https://github.com/blue101010/chromadb-article/tree/main
https://github.com/blue101010/chromadb-article/tree/main
https://www.trychroma.com

2. Notions préliminaires

2.1. Embeddings de mots et de phrases
Un embedding 2 est une application f : T → Rd qui envoie un texte de

longueur variable t ∈ T vers un vecteur réel de dimension fixe d.

O

u

v

θ

Si θ petit ⇒ cos(θ) ≈ 1
(textes similaires)

Si θ = 90 ⇒ cos(θ) = 0
(textes indépendants)

∥u∥

∥v
∥

Figure 1 – Interprétation géométrique de la similarité cosinus : cos(θ) mesure l’angle entre
deux vecteurs. Plus l’angle est petit, plus cos(θ) est proche de 1 (textes similaires). Les
longueurs ∥u∥ et ∥v∥ au dénominateur normalisent le résultat pour que seule la direction
compte.

De bons embeddings placent les textes sémantiquement proches à faible
distance et les textes dissemblables à grande distance, où « proche » est
mesuré par une fonction de distance ou de similarité telle que la similarité
cosinus :

cos(u,v) =
u · v

∥u∥ ∥v∥
=

d∑
i=1

ui vi√√√√ d∑
i=1

u2
i

√√√√ d∑
i=1

v2i

. (1)

2. embedding En français : plongement ou représentation vectorielle. Le terme anglais
est couramment utilisé dans la littérature technique.

3

Cette formule mesure l’angle entre deux vecteurs. Une valeur proche de 1
signifie que les vecteurs pointent dans la même direction (textes très simi-
laires), tandis qu’une valeur proche de 0 indique des directions perpendicu-
laires (textes sans rapport). La normalisation par les longueurs ∥u∥ et ∥v∥
garantit que seule la direction compte, pas la magnitude.
Le numérateur (u ·v) mesure à quel point les vecteurs vont dans la même di-
rection. Le dénominateur normalise ce résultat par les longueurs des vecteurs,
de sorte que des phrases longues et courtes ayant le même sens obtiennent le
même score de similarité.

ChromaDB stocke la distance cosinus, définie comme 1 − cos(u,v), de
sorte que les valeurs plus petites indiquent une similarité plus élevée.

2.2. Encodeurs transformeurs et BERT
Le modèle all-MiniLM-L6-v2 utilisé par la fonction d’embedding par dé-

faut de ChromaDB est un encodeur BERT distillé [2] avec 6 couches trans-
formeur, 12 têtes d’attention et une taille cachée de 384. Il a été entraîné
avec un objectif contrastif sur plus d’un milliard de paires de phrases pour
produire des embeddings de phrases sémantiquement significatifs.

Chaque couche transformeur applique de l’auto-attention multi-têtes 3

suivie d’un réseau feed-forward :

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V, (2)

où dk = 384/12 = 32 est la dimension par tête. La sortie de la dernière couche
est une matrice H ∈ Rn×384, où n est la longueur de la séquence.

2.3. Index HNSW
Hierarchical Navigable Small World (HNSW) [3] est un algorithme de re-

cherche approximative de plus proches voisins basé sur un graphe. Il construit
un graphe multi-couches où :

— La couche du bas contient tous les vecteurs.

3. Auto-attention : mécanisme qui calcule, pour chaque mot, une représentation pon-
dérée de tous les autres mots de la phrase. Multi-têtes : ce calcul est effectué 12 fois
en parallèle avec des paramètres différents, capturant différents types de dépendances lin-
guistiques. Feed-forward : réseau de neurones appliqué indépendamment à chaque position
pour transformer les représentations.

4

— Chaque couche supérieure est un sous-ensemble aléatoire de la couche
inférieure.

— Les arêtes connectent chaque nœud à ses M plus proches voisins dans
cette couche.

Une requête commence à la couche la plus haute et descend de manière glou-
tonne en affinant l’ensemble de candidats à chaque couche. Les paramètres
clés sont M (max_neighbors), ef_construction et ef_search, tous confi-
gurés par défaut par ChromaDB (Tableau 2).

3. Vue d’ensemble de l’architecture

La Figure 2 montre le flux de données complet depuis le texte brut jus-
qu’aux résultats de requête. Le pipeline se compose de cinq étapes, chacune
détaillée en Section 5.

1. Tokenisation
BertTokenizer

2. Transformeur
MiniLM-L6-v2 (ONNX)

3. Mean Pooling
pondéré par l’attention

4. Normalisation L2

5. Index HNSW
distance cosinus

IDs de tokens
[101, 2035, . . . , 102]

états cachés
H ∈ R256×384

vecteur de phrase
e ∈ R384

vecteur unitaire
ê, ∥ê∥ = 1

Texte brut : "L’expédition standard nationale..."

Indexé et recherchable

Figure 2 – Pipeline d’embedding par défaut de ChromaDB, du texte brut au vecteur
indexé. Chaque boîte numérotée correspond à une étape décrite en Section 5.

5

4. Un exemple complet fonctionnel

Nous commençons par le programme complet, puis décortiquons chaque
partie.

4.1. Le jeu de données : policies.txt
Notre jeu de données est un fichier texte de 56 lignes, chacune contenant

une phrase de la politique d’expédition et de retours d’une entreprise e-
commerce fictive. Les trois premières lignes sont :

All garments are inspected for quality before being
packaged for shipment ...

Standard domestic shipping takes 3-5 business days ...
Expedited domestic shipping delivers within 1-2

business days ...

Listing 1 – Trois premières lignes de policies.txt.

4.2. Indexation des documents
Le Listing 2 montre le programme d’indexation complet.

1 import chromadb
2 import uuid
3

4 # 1. Créer un client éphémère (en mémoire)
5 client = chromadb.Client ()
6

7 # 2. Créer une collection (comme une "table" pour
vecteurs)

8 collection = client.create_collection(name="policies")
9

10 # 3. Lire les phrases de politique
11 with open("policies.txt", "r", encoding="utf -8") as f:
12 policies: list[str] = f.read().splitlines ()
13

14 # 4. Ajouter les documents -- les embeddings sont calculé
s automatiquement

15 collection.add(
16 ids=[str(uuid.uuid4()) for _ in policies],
17 documents=policies ,

6

18 metadatas =[{"line": line} for line in range(len(
policies))],

19)
20

21 # 5. Inspecter les 10 premiers enregistrements
22 print(collection.peek())

Listing 2 – Programme d’indexation minimal ChromaDB (main.py).

L’exécution de ce programme produit la sortie du Listing 3, où chaque
document a été transformé en vecteur de 384 dimensions.

{
’ids’: [’0d07bf7e -...’, ’b17bedb6 -...’, ...],
’embeddings ’: array([

[-7.539e-02, 4.958e-02, 1.364e-02, ...,
-1.041e-01, 7.627e-02, -1.993e-02], # doc 0

[1.046e-02, -3.367e-02, 3.771e-02, ...,
-3.124e-02, -2.690e-03, 4.416e-02], # doc 1

...
], shape =(10, 384)),
’documents ’: [

’All garments are inspected ...’,
’Standard domestic shipping ...’,
...

],
’metadatas ’: [{’line’: 0}, {’line’: 1}, ...]

}

Listing 3 – Sortie abrégée de collection.peek().

4.3. Interrogation : recherche sémantique

1 results = collection.query(
2 query_texts =["How long does shipping take?"],
3 n_results=3,
4)
5 for doc , dist in zip(results["documents"][0],
6 results["distances"][0]):
7 print(f" [{dist :.4f}] {doc [:80]}...")

Listing 4 – Interrogation de la collection pour trouver des documents similaires.

7

[0.2891] Standard domestic shipping takes 3-5
business days after your order ...

[0.3312] Expedited domestic shipping delivers
within 1-2 business days for orders ...

[0.4718] International shipping is available to
over 200 destinations , with transit ...

Listing 5 – Résultats : top-3 par distance cosinus (plus petit = meilleur).

Le texte de la requête est transformé en embedding via le même pipeline
que les documents. L’index HNSW retourne ensuite les trois vecteurs les plus
proches par distance cosinus.

5. Décorticage du pipeline d’embedding

Lorsque l’utilisateur appelle collection.add(documents=...), Chro-
maDB détecte qu’aucune embedding_function n’a été fournie et utilise par
défaut DefaultEmbeddingFunction, qui délègue à ONNXMiniLM_L6_V2. Nous
traçons maintenant chaque étape interne.

5.1. Étape 1 : téléchargement et mise en cache du modèle
Lors de la première utilisation, le modèle est téléchargé depuis un bucket

S3 et mis en cache localement :

~/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx/

Le cache contient quatre fichiers :

Table 1 – Fichiers dans le répertoire du modèle ONNX en cache.

Fichier Taille Rôle

model.onnx ∼90Mo Poids du transformeur (format ONNX)
tokenizer.json ∼700Ko Vocabulaire et règles BertTokenizer
config.json <1Ko Hyperparamètres de l’architecture
vocab.txt ∼230Ko 30 522 tokens WordPiece

8

5.2. Étape 2 : tokenisation
Le tokeniseur est un BertTokenizer chargé depuis tokenizer.json via la

bibliothèque Hugging Face tokenizers. Il effectue :
1. Mise en minuscules : tout le texte est converti en minuscules.
2. Découpage WordPiece : les mots sont découpés en sous-tokens issus

d’un vocabulaire de 30 522 entrées.
3. Insertion de tokens spéciaux : [CLS] est ajouté au début, [SEP]

à la fin.
4. Troncature : les séquences de plus de 256 tokens sont tronquées.
5. Rembourrage (padding) : les séquences de moins de 256 tokens

sont complétées à droite avec [PAD] (ID 0).

1 from tokenizers import Tokenizer
2 import os
3

4 # Charger le même tokeniseur que ChromaDB
5 cache = os.path.expanduser(
6 "~/. cache/chroma/onnx_models/"
7 "all -MiniLM -L6-v2/onnx"
8)
9 tok = Tokenizer.from_file(

10 os.path.join(cache , "tokenizer.json")
11)
12 tok.enable_truncation(max_length =256)
13 tok.enable_padding(pad_id=0, pad_token="[PAD]",
14 length =256)
15

16 text = "Standard domestic shipping takes 3-5 days"
17 enc = tok.encode(text)
18 print(enc.ids [:15])
19 # [101, 3115, 4968, 6554, 3138, 1017, 1011, 1019,
20 # 2420, 102, 0, 0, 0, 0, 0]
21 print(enc.attention_mask [:15])
22 # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

Listing 6 – Reproduction manuelle de l’étape de tokenisation.

Le attention_mask distingue les vrais tokens (1) du rembourrage (0). Ce
masque est essentiel pour le mean pooling (Étape 4).

9

5.3. Étape 3 : passe avant du transformeur
Les entrées tokenisées sont passées à la session d’inférence ONNX Run-

time :

1 import numpy as np
2 import onnxruntime as ort
3

4 session = ort.InferenceSession(
5 os.path.join(cache , "model.onnx")
6)
7

8 onnx_input = {
9 "input_ids": np.array([enc.ids],

10 dtype=np.int64),
11 "attention_mask": np.array([enc.attention_mask],
12 dtype=np.int64),
13 "token_type_ids": np.zeros((1, 256),
14 dtype=np.int64),
15 }
16

17 output = session.run(None , onnx_input)
18 last_hidden = output [0] # shape: (1, 256, 384)
19 print(last_hidden.shape)
20 # (1, 256, 384)

Listing 7 – Inférence ONNX Runtime (simplifiée depuis le code source de ChromaDB).

Le tenseur de sortie H ∈ R1×256×384 contient un vecteur de 384 dimensions
pour chaque position de token.

5.4. Étape 4 : mean pooling
Un embedding de phrase unique est produit en moyennant les vecteurs de

tokens, mais uniquement sur les vrais tokens (en excluant le rembourrage) :

10

e =

n∑
i=1

mi hi

n∑
i=1

mi

, 4 (3)

où hi ∈ R384 est l’état caché à la position i et mi ∈ {0, 1} est le masque
d’attention.

1 mask = np.array([enc.attention_mask], dtype=np.float32)
2 mask_expanded = np.broadcast_to(
3 np.expand_dims(mask , -1), last_hidden.shape
4)
5

6 embedding = np.sum(
7 last_hidden * mask_expanded , axis=1
8) / np.clip(
9 mask_expanded.sum(axis =1), a_min=1e-9, a_max=None

10)
11 print(embedding.shape) # (1, 384)

Listing 8 – Implémentation du mean pooling (issue du code source de ChromaDB).

5.5. Étape 5 : normalisation L2
L’embedding est normalisé à longueur unitaire afin que le produit scalaire

soit égal à la similarité cosinus :

ê =
e

∥e∥2
, où ∥e∥2 =

√√√√ 384∑
i=1

e2i
5. (4)

4. Mean pooling pondéré : moyenne arithmétique des états cachés hi, où le masque
mi ∈ {0, 1} exclut les tokens de rembourrage. Pour une phrase de 10 mots réels + 246
tokens [PAD], seuls les 10 premiers vecteurs contribuent à la moyenne. Cette opération
condense une séquence de longueur variable en un embedding de taille fixe.

5. Cette normalisation ramène tous les vecteurs à une longueur unitaire (comme des
points sur une sphère de rayon 1), de sorte que seule leur direction compte. Cela rend la
comparaison indépendante de la longueur du texte original.

11

Interprétation : on divise chaque dimension du vecteur e par sa longueur
totale ∥e∥2, obtenant un vecteur ê de longueur exactement 1. Cela garantit
que deux phrases longues et courtes ayant le même sens seront considérées
comme identiques, car seule leur direction dans l’espace compte, pas leur
magnitude.

Après normalisation, ∥ê∥ = 1, ce qui signifie que cos(û, v̂) = û · v̂.

1 norm = np.linalg.norm(embedding , axis=1, keepdims=True)
2 norm = np.maximum(norm , 1e-12)
3 embedding_normed = embedding / norm
4

5 print(np.linalg.norm(embedding_normed))
6 # 1.0000001 (précision float32)

Listing 9 – Normalisation L2.

Explication ligne par ligne de la normalistion L2 :
— Ligne 1 : Calcule la longueur euclidienne du vecteur (norme L2) :

∥e∥2 =
√

e21 + e22 + . . .+ e2384. Le paramètre axis=1 calcule la norme
pour chaque ligne (document) séparément.

— Ligne 2 : Évite la division par zéro en garantissant que la norme est
au minimum 10−12. Cela protège contre le cas improbable d’un vecteur
nul.

— Ligne 3 : Divise chaque dimension du vecteur par sa norme totale.
C’est l’opération ê = e/∥e∥2 de l’Équation 4.

— Ligne 5 : Vérifie que le vecteur normalisé a bien une longueur de 1
(avec la légère imprécision numérique du format float32).

Le vecteur résultant de 384 valeurs float32 est ce que ChromaDB stocke
et indexe.

6. L’index HNSW

Après la génération de l’embedding, les vecteurs sont insérés dans un
graphe HNSW [3]. Le Tableau 2 liste les paramètres par défaut de Chro-
maDB.

12

Table 2 – Paramètres HNSW par défaut dans ChromaDB.

Paramètre Défaut Signification

space cosine Métrique de distance
ef_construction 100 Largeur de faisceau à la construction
max_neighbors (M) 16 Arêtes par nœud
ef_search 100 Largeur de faisceau à la recherche
num_threads nb CPU Threads parallèles

Insertion.. Lorsqu’un nouveau vecteur ê est ajouté, HNSW :
1. L’affecte à une couche aléatoire ℓ (distribution géométrique).
2. En partant du point d’entrée à la couche la plus haute, trouve glou-

tonnement le plus proche voisin à chaque couche jusqu’à ℓ.
3. Aux couches ℓ à 0, connecte le nouveau nœud à ses M plus proches

voisins en élaguant les arêtes les plus longues.

Recherche.. Étant donné un vecteur de requête q̂, HNSW parcourt depuis la
couche supérieure vers le bas en maintenant une liste dynamique de candi-
dats de taille ef_search. À la couche du bas, les k meilleurs candidats sont
retournés. La complexité est O(logN) par requête pour N vecteurs, contre
O(N) en force brute.

7. Assemblage complet : un exemple de récupération RAG

Le Listing 10 montre un programme de récupération complet qu’un chat-
bot basé sur un LLM pourrait utiliser pour répondre aux questions des clients.

1 import chromadb
2 import uuid
3

4 # --- Phase d’indexation ---
5 client = chromadb.Client ()
6 collection = client.create_collection(
7 name="policies"
8)
9

10 with open("policies.txt", "r", encoding="utf -8") as f:
11 policies = f.read().splitlines ()

13

12

13 collection.add(
14 ids=[str(uuid.uuid4()) for _ in policies],
15 documents=policies ,
16 metadatas =[{"line": i} for i in range(len(policies))

],
17)
18

19 # --- Phase de récupération ---
20 queries = [
21 "Can I return swimwear?",
22 "Do you ship internationally?",
23 "What about carbon emissions?",
24]
25

26 for q in queries:
27 results = collection.query(
28 query_texts =[q], n_results =3
29)
30 print(f"\nQuery: {q}")
31 for doc , dist , meta in zip(
32 results["documents"][0],
33 results["distances"][0],
34 results["metadatas"][0],
35):
36 print(f" [{dist :.4f}] (ligne {meta[’line ’]}) "
37 f"{doc [:70]}...")

Listing 10 – Exemple complet de récupération RAG.

Query: Can I return swimwear?
[0.4102] (ligne 12) Swimwear can only be returned

with hygienic liners and all tags intact ...
[0.5238] (ligne 10) Returned items must be unworn ,

unwashed , and free of odors , stains ...
[0.5514] (ligne 11) Footwear must be returned in

the original box , which should be placed ...

Query: Do you ship internationally?
[0.3156] (ligne 3) International shipping is

available to over 200 destinations ...

14

[0.5289] (ligne 4) Customers are responsible for
any local duties , taxes , or import fees ...

[0.5834] (ligne 1) Standard domestic shipping takes
3-5 business days after your order ...

Query: What about carbon emissions?
[0.2893] (ligne 7) We offset 100 percent of

shipping -related carbon emissions ...
[0.5617] (ligne 8) Packaging materials are made

from 100 percent recycled or sustainably ...
[0.7901] (ligne 0) All garments are inspected for

quality before being packaged ...

Listing 11 – Sortie de l’exemple RAG.

Observez comment chaque requête retrouve les phrases de politique les
plus pertinentes sémantiquement, même lorsque les mots exacts diffèrent (par
exemple, « carbon emissions » correspond à la politique de compensation
carbone).

8. Comprendre les nombres : anatomie d’un embedding

Chaque embedding est un vecteur dense de 384 nombres à virgule flottante
simple précision IEEE 754. Le Tableau 3 montre des dimensions sélectionnées
pour trois phrases de politique.

Table 3 – Dimensions sélectionnées des embeddings pour trois documents. Les valeurs
sont arrondies à trois décimales.

Dim Qualité Livraison Retours
(ligne 0) (ligne 1) (ligne 9)

e1 −0,075 0,010 −0,021
e2 0,050 −0,034 −0,000
e3 0,014 0,038 0,007
...

...
...

...
e382 −0,104 −0,031 −0,013
e383 0,076 −0,003 0,016
e384 −0,020 0,044 0,024

∥ê∥ 1,000 1,000 1,000

15

Les dimensions individuelles ne sont pas interprétables par l’humain ; le
sens émerge des relations géométriques entre vecteurs. Deux phrases liées à
la livraison auront une faible distance cosinus (≈ 0,3), tandis qu’une phrase
de livraison et une phrase de retours auront une distance plus grande (≈ 0,6).

9. Configuration principale de ChromaDB

Le Tableau 4 résume les valeurs par défaut les plus importantes.

Table 4 – Valeurs de configuration par défaut de ChromaDB relatives aux embeddings.

Paramètre Valeur par défaut Notes

Modèle d’embedding all-MiniLM-L6-v2 22M paramètres, ONNX
Dimension 384 float32
Tokens max 256 Tronqué si plus long
Taille du vocabulaire 30 522 WordPiece
Taille du batch 32 Documents par passe avant
Métrique de distance cosinus 1− cos(u,v)
Backend de stockage Mémoire / SQLite Éphémère vs. persistant

9.1. Utiliser une fonction d’embedding personnalisée
ChromaDB permet de remplacer le modèle par défaut :

1 from chromadb.utils.embedding_functions import (
2 OpenAIEmbeddingFunction ,
3)
4

5 ef = OpenAIEmbeddingFunction(
6 api_key="sk -...",
7 model_name="text -embedding -3-small",
8)
9

10 collection = client.create_collection(
11 name="policies",
12 embedding_function=ef,
13)
14 # collection.add() utilisera maintenant l’API OpenAI

Listing 12 – Utilisation des embeddings OpenAI au lieu du modèle par défaut.

16

10. Note de compatibilité Python 3.14

À la version 1.4.1 de ChromaDB, l’importation de la bibliothèque sous
Python 3.14 échoue en raison d’un bogue de détection de version de Pydantic
dans chromadb/config.py (issue GitHub #5996) 6. La cause racine est que
pydantic.v1, une couche de compatibilité rétroactive, utilise de l’introspec-
tion de métaclasses incompatible avec l’évaluation différée des annotations
de Python 3.14 (PEP 749). Le correctif nécessite :

1. L’installation de pydantic-settings≥2.0.
2. Le remplacement du bloc d’import dans config.py pour privilégier

pydantic_settings.BaseSettings.
3. L’ajout d’annotations de type à trois champs non annotés

(chroma_coordinator_host, chroma_logservice_host,
chroma_logservice_port).

Un script de patch automatisant ces étapes est disponible dans le dépôt
accompagnant cet article.

11. Embeddings multilingues : étude de cas e-commerce en français

Le modèle par défaut all-MiniLM-L6-v2 est entraîné principalement sur
des données anglaises. Pour les corpus non anglophones, le modèle ONNX
intégré à ChromaDB produit des embeddings de mauvaise qualité car le
vocabulaire sous-jacent et la distribution d’entraînement ne couvrent pas bien
les autres langues. Cette section montre comment remplacer le modèle par
défaut par un encodeur de phrases multilingue et démontre deux capacités
puissantes : la recherche sémantique en français et la recherche interlingue
(requêtes en anglais sur un corpus en français).

11.1. Pourquoi un modèle multilingue ?
Le modèle paraphrase-multilingual-MiniLM-L12-v2 [5] a été entraîné

sur des paires de phrases parallèles dans plus de 50 langues à l’aide d’une
procédure de distillation de connaissances : un modèle enseignant anglais de
haute qualité guide un modèle étudiant multilingue de sorte que des phrases
sémantiquement équivalentes reçoivent des vecteurs similaires quelle que soit
la langue. Le Tableau 5 compare les deux modèles.

6. https://github.com/chroma-core/chroma/issues/5996

17

https://github.com/chroma-core/chroma/issues/5996

Table 5 – Comparaison du modèle anglais par défaut et du modèle multilingue utilisé
dans cette section.

all-MiniLM-L6-v2 paraphrase-multilingual-
MiniLM-L12-v2

Langues Anglais seul 50+
Couches 6 12
Dim. cachée 384 384
Paramètres 22M 118M
Taille download ∼90Mo ∼470Mo
Moteur d’exéc. ONNX (intégré) Sentence-Transformers (PyTorch)

Le modèle multilingue utilise la même dimensionnalité de sortie (384)
que le modèle par défaut, donc la configuration HNSW et les métriques de
distance restent inchangées. La différence clé est que le modèle est chargé via
la bibliothèque sentence-transformers plutôt que par le moteur ONNX
intégré à ChromaDB.

11.2. Création de la fonction d’embedding multilingue
ChromaDB fournit un wrapper SentenceTransformerEmbeddingFunction

qui délègue le calcul des embeddings à la bibliothèque sentence-transformers.
Cela permet d’utiliser n’importe quel modèle du hub Sentence-Transformers 7.

1 from chromadb.utils.embedding_functions import (
2 SentenceTransformerEmbeddingFunction ,
3)
4

5 MODEL_NAME = "paraphrase -multilingual -MiniLM -L12 -v2"
6

7 # Le modèle est téléchargé automatiquement au 1er appel
8 # (~470 Mo) et mis en cache dans
9 # ~/. cache/torch/sentence_transformers/

10 embedding_fn = SentenceTransformerEmbeddingFunction(
11 model_name=MODEL_NAME ,
12 # device ="cuda" # décommenter pour GPU NVIDIA
13)

7. https://huggingface.co/sentence-transformers

18

https://huggingface.co/sentence-transformers

Listing 13 – Instanciation de la fonction d’embedding multilingue.

Le premier appel déclenche un téléchargement automatique de ∼470 Mo
depuis le hub Hugging Face. Les exécutions suivantes utilisent le cache local
situé dans ~/.cache/torch/sentence_transformers/. Si un GPU compa-
tible CUDA est disponible, passer device="cuda" décharge l’inférence du
transformeur sur le GPU, offrant une accélération significative pour les grands
lots.

11.3. Jeu de données : polices e-commerce en français
Nous utilisons une traduction française du même jeu de 56 phrases de

polices e-commerce (polices.txt). Chaque ligne est une phrase de police en
français, par exemple :

L’expédition standard nationale prend de 3 à 5 jours
ouvrables après le traitement de la commande ...

Les maillots de bain ne peuvent être retournés que
si les doublures hygiéniques et toutes les
étiquettes sont intactes ...

Nous compensons 100 %% des émissions de carbone liées
à l’expédition en investissant dans des projets
environnementaux et de reforestation vérifiés...

Listing 14 – Lignes sélectionnées de polices.txt (polices en français).

11.4. Indexation avec métadonnées par catégorie
Pour enrichir les documents stockés, nous assignons un label de catégorie

à chaque phrase de police à l’aide d’une simple fonction de correspondance
par mots-clés. Ces métadonnées sont stockées aux côtés de l’embedding et
peuvent servir à filtrer les résultats lors de l’interrogation.

1 import chromadb
2 import uuid
3

4 def _categorize(text: str) -> str:
5 """Assigne une catégorie par mots -clés."""
6 t = text.lower()
7 if any(w in t for w in
8 ["livraison", "expédition", "colis"]):

19

9 return "livraison"
10 if any(w in t for w in
11 ["retour", "rembours", "échange"]):
12 return "retours"
13 if any(w in t for w in
14 ["prix", "promo", "rabais"]):
15 return "tarification"
16 # ... catégories supplémentaires omises
17 return "général"
18

19 client = chromadb.Client ()
20

21 collection = client.create_collection(
22 name="polices_fr",
23 embedding_function=embedding_fn ,
24 metadata ={"hnsw:space": "cosine"},
25)
26

27 with open("polices.txt", "r", encoding="utf -8") as f:
28 polices = [l.strip() for l in f
29 if l.strip()]
30

31 collection.add(
32 ids=[str(uuid.uuid4()) for _ in polices],
33 documents=polices ,
34 metadatas =[{
35 "ligne": i,
36 "categorie": _categorize(doc),
37 "langue": "fr",
38 } for i, doc in enumerate(polices)],
39)

Listing 15 – Catégorisation par mots-clés et indexation des polices françaises
(main_fr_polices.py).

Le dictionnaire metadata sur la collection fixe la métrique de distance
HNSW à cosinus (la valeur par défaut, rendue explicite ici pour la clarté).
Les métadonnées de chaque document incluent son numéro de ligne, la ca-
tégorie assignée automatiquement et un tag de langue. ChromaDB sup-
porte les filtres where sur les métadonnées, de sorte qu’une application en

20

aval pourrait restreindre la recherche à une catégorie spécifique (par ex.,
where={"categorie": "livraison"}).

11.5. Recherche sémantique en français
Avec les documents français indexés, nous effectuons des requêtes séman-

tiques entièrement en français. Le modèle multilingue projette à la fois les
requêtes et les documents dans le même espace de 384 dimensions, de sorte
que la distance cosinus reflète la similarité sémantique quelle que soit la
langue.

1 requetes = [
2 "Combien de temps prend la livraison ?",
3 "Est -ce que je peux retourner un maillot"
4 " de bain ?",
5 "Comment fonctionne le programme de"
6 " fidélité ?",
7 "Les articles en solde sont -ils"
8 " échangeables ?",
9]

10

11 for query in requetes:
12 results = collection.query(
13 query_texts =[query],
14 n_results=5,
15)
16 print(f"Requête : {query}")
17 for doc , dist , meta in zip(
18 results["documents"][0],
19 results["distances"][0],
20 results["metadatas"][0],
21):
22 print(f" [{dist :.4f}] "
23 f"({meta[’categorie ’]}) "
24 f"{doc [:80]}...")

Listing 16 – Interrogation de la collection française avec des questions en français.

Requête : Combien de temps prend la livraison ?
[0.2134] (livraison) L’expédition standard

nationale prend de 3 à 5 jours ouvrables ...

21

[0.2987] (livraison) L’expédition express
nationale livre sous 1 à 2 jours ouvrables ...

[0.4256] (livraison) La livraison internationale
est disponible vers plus de 200 destinations ...

Listing 17 – Résultats sélectionnés pour la requête française « Combien de temps prend
la livraison ? ».

Les distances cosinus sont comparables à celles obtenues avec le modèle
anglais sur des données anglaises (Section 4.3), confirmant que le modèle
multilingue atteint une qualité discriminative similaire en français.

11.6. Recherche interlingue : requêtes en anglais sur des documents français
La capacité la plus remarquable d’un modèle d’embedding multilingue

est sans doute la recherche interlingue : interroger dans une langue et retrou-
ver des documents écrits dans une autre. Parce que le modèle a été entraîné
sur des corpus parallèles, des phrases sémantiquement équivalentes dans des
langues différentes sont projetées vers des points voisins dans l’espace d’em-
bedding.

1 queries_en = [
2 "How long does shipping take?",
3 "Can I return swimwear?",
4 "What is your carbon offset policy?",
5]
6

7 for query in queries_en:
8 results = collection.query(
9 query_texts =[query],

10 n_results=3,
11)
12 print(f"Query (EN): {query}")
13 for doc , dist in zip(
14 results["documents"][0],
15 results["distances"][0],
16):
17 print(f" [{dist :.4f}] {doc [:80]}...")

Listing 18 – Recherche interlingue : requêtes en anglais sur des documents français.

Query (EN): How long does shipping take?

22

[0.3356] L’expédition standard nationale prend
de 3 à 5 jours ouvrables ...

[0.4238] Nous offrons un délai de retour de
30 jours à compter de la date de livraison ...

[0.4249] L’expédition express nationale livre
sous 1 à 2 jours ouvrables ...

Query (EN): Can I return swimwear?
[0.5243] Les maillots de bain ne peuvent être

retournés que si les doublures hygiéniques ...
[0.7104] Les articles retournés doivent être non

portés, non lavés et exempts d’odeurs ...
[0.7357] Nous offrons un délai de retour de

30 jours à compter de la date de livraison ...

Query (EN): What is your carbon offset policy?
[0.4542] Nous compensons 100 %% des émissions de

carbone liées à l’expédition en investissant ...
[0.6586] Nous pouvons mettre à jour ces politiques

périodiquement ...
[0.6924] Les commandes de plus de 75 dollars sont

admissibles à la livraison standard gratuite ...

Listing 19 – Résultats interlingues : des requêtes en anglais retrouvent des documents
français pertinents.

La requête anglaise « How long does shipping take ? » retrouve correcte-
ment la phrase française sur les délais de livraison standard avec une distance
cosinus de seulement 0,3356 — démontrant que le modèle place des phrases
sémantiquement équivalentes dans des langues différentes très proches dans
l’espace d’embedding.

23

11.7. Discussion
Cet exemple multilingue met en lumière trois leçons pratiques pour la

construction de systèmes RAG sur du texte non anglophone :

1. Le choix du modèle est déterminant. Le modèle ONNX par dé-
faut est exclusivement anglais. Pour les corpus multilingues,
SentenceTransformerEmbeddingFunction avec un modèle tel que
paraphrase-multilingual-MiniLM-L12-v2 est un remplacement di-
rect qui ne nécessite qu’un seul argument supplémentaire.

2. La recherche interlingue est gratuite. Une fois un modèle mul-
tilingue utilisé, la recherche anglais↔français (et tout autre couple
de langues supporté) fonctionne immédiatement — aucun pipeline de
traduction n’est nécessaire.

3. L’enrichissement par métadonnées est orthogonal. Les filtres
de métadonnées de ChromaDB (par ex., where={"categorie": "livraison"})
peuvent être combinés avec la recherche sémantique quel que soit le
modèle d’embedding, permettant des stratégies de recherche hybrides
mêlant signaux par mots-clés et signaux sémantiques.

Le compromis est le coût d’exécution : le modèle multilingue à 12 couches
est environ 2× plus lent que le modèle anglais à 6 couches sur CPU. Pour
les applications sensibles à la latence, l’inférence GPU (device="cuda") ou
le modèle plus léger distiluse-base-multilingual-cased-v2 (512 dimen-
sions) peuvent être préférables.

12. Résumé et lectures complémentaires

Cet article a retracé le cycle de vie complet d’un document dans Chro-
maDB :

1. Le texte brut est tokenisé en sous-tokens WordPiece.
2. Les tokens passent par un transformeur BERT à 6 couches exé-

cuté dans ONNX Runtime, produisant des états cachés de 384 dimen-
sions pour chaque position de token.

3. Les états cachés sont agrégés par mean pooling (pondéré par le
masque d’attention) pour condenser la séquence en un seul vecteur.

4. Le vecteur est normalisé L2 à longueur unitaire.

24

5. Le vecteur unitaire est inséré dans un graphe HNSW qui supporte
des requêtes approximatives de plus proches voisins en O(logN) par
distance cosinus.

Nous avons également montré que le modèle anglais par défaut peut être
remplacé par un encodeur de phrases multilingue
(paraphrase-multilingual-MiniLM-L12-v2) via
SentenceTransformerEmbeddingFunction, permettant la recherche séman-
tique en français et la recherche interlingue où des requêtes en anglais
retrouvent correctement des documents français — sans aucun pipeline de
traduction.

Pour approfondir, nous recommandons :
— La documentation Sentence-Transformers 8 pour entraîner des mo-

dèles d’embedding personnalisés.
— L’article HNSW [3] pour les garanties théoriques de l’index.
— La documentation ChromaDB 9 pour les patrons de déploiement en

production (stockage persistant, authentification, mode distribué).

8. https://www.sbert.net
9. https://docs.trychroma.com

25

https://www.sbert.net
https://docs.trychroma.com

Références

[1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel et D. Kiela,
« Retrieval-augmented generation for knowledge-intensive NLP tasks »,
dans Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, 2020, p. 9459–9474. arXiv :2005.11401. [En ligne]. Disponible :
https://arxiv.org/abs/2005.11401

[2] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang et M. Zhou, « MiniLM : Deep
self-attention distillation for task-agnostic compression of pre-trained
transformers », dans Advances in Neural Information Processing Sys-
tems, H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan et H. Lin,
Éd. Curran Associates, Inc., vol. 33, 2020, p. 5776–5788. Disponible :
https://arxiv.org/abs/2002.10957

[3] Y. A. Malkov et D. A. Yashunin, « Efficient and robust approximate nea-
rest neighbor search using Hierarchical Navigable Small World graphs
», IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no 4, p. 824–836, 2020. doi : 10.1109/TPAMI.2018.2889473.
arXiv :1603.09320. [En ligne]. Disponible : https://arxiv.org/abs/
1603.09320

[4] J. Devlin, M.-W. Chang, K. Lee et K. Toutanova, « BERT : Pre-training
of deep bidirectional transformers for language understanding », dans
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics : Human Language Tech-
nologies (NAACL-HLT), vol. 1, 2019, p. 4171–4186. arXiv :1810.04805.
[En ligne]. Disponible : https://aclanthology.org/N19-1423/

[5] N. Reimers et I. Gurevych, « Sentence-BERT : Sentence embeddings
using Siamese BERT-networks », dans Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, p. 3982–3992. arXiv :1908.10084. [En ligne]. Disponible :
https://aclanthology.org/D19-1410/

[6] J. Lovejoy, A. Sanchez et al., « Chroma : The AI-native open-source
embedding database », Logiciel open-source, 2023. [En ligne]. Disponible :
https://www.trychroma.com

26

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://aclanthology.org/N19-1423/
https://aclanthology.org/D19-1410/
https://www.trychroma.com

[7] Microsoft, « ONNX Runtime : Cross-platform, high performance ML in-
ferencing and training accelerator », Version 1.16, 2024. [En ligne]. Dis-
ponible : https://github.com/microsoft/onnxruntime

[8] A. Moi et al., « Tokenizers : Fast state-of-the-art tokenizers for modern
NLP pipelines », Hugging Face, 2020. [En ligne]. Disponible : https:
//github.com/huggingface/tokenizers

[9] N. Reimers et I. Gurevych, « Sentence-Transformers : Python framework
for state-of-the-art sentence, text and image embeddings », 2019. [En
ligne]. Disponible : https://www.sbert.net

27

https://github.com/microsoft/onnxruntime
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://www.sbert.net

	Introduction
	Notions préliminaires
	Embeddings de mots et de phrases
	Encodeurs transformeurs et BERT
	Index HNSW

	Vue d'ensemble de l'architecture
	Un exemple complet fonctionnel
	Le jeu de données : policies.txt
	Indexation des documents
	Interrogation : recherche sémantique

	Décorticage du pipeline d'embedding
	Étape 1 : téléchargement et mise en cache du modèle
	Étape 2 : tokenisation
	Étape 3 : passe avant du transformeur
	Étape 4 : mean pooling
	Étape 5 : normalisation L2

	L'index HNSW
	Assemblage complet : un exemple de récupération RAG
	Comprendre les nombres : anatomie d'un embedding
	Configuration principale de ChromaDB
	Utiliser une fonction d'embedding personnalisée

	Note de compatibilité Python 3.14
	Embeddings multilingues : étude de cas e-commerce en français
	Pourquoi un modèle multilingue ?
	Création de la fonction d'embedding multilingue
	Jeu de données : polices e-commerce en français
	Indexation avec métadonnées par catégorie
	Recherche sémantique en français
	Recherche interlingue : requêtes en anglais sur des documents français
	Discussion

	Résumé et lectures complémentaires

