ChromaDB par la pratique : comment une base de
données vectorielle transforme du texte en embeddings
recherchables

Franck Jeannot
Montréal, Canada, AC862, Février 2025

Résumé

Les bases de données vectorielles sont un pilier des pipelines modernes de
génération augmentée par récupération (RAG), mais leur fonctionnement in-
terne reste opaque pour de nombreux praticiens. Ce tutoriel décortique Chro-
maDB — une base de données vectorielle open-source et embarquable — de-
puis ’API Python jusqu’au moteur d’inférence ONNX qui convertit du texte
brut en vecteurs de 384 dimensions. A partir d’un programme minimal de 18
lignes indexant 56 phrases de politiques commerciales, nous tracons chaque
étape du pipeline : tokenisation, passe avant du transformeur, mean poo-
ling, normalisation L2, indexation HNSW et recherche par distance cosinus.
Chaque étape est illustrée par du code concret, des sorties intermédiaires et
des définitions mathématiques, de sorte qu'un lecteur ayant des connaissances
de base en Python puisse reproduire et étendre les expériences. Nous mon-
trons également comment remplacer le modéle anglais par défaut par un en-
codeur de phrases multilingue (paraphrase-multilingual-MinilM-L12-v2)
pour indexer et interroger des documents en frangais, y compris la recherche
interlingue ou des requétes en anglais retrouvent des résultats pertinents en
frangais. Nous discutons enfin du correctif de compatibilité Python 3.14 né-
cessaire pour les versions actuelles de ChromaDB.

Keywords: base de données vectorielle, embeddings, ChromaDB, HNSW,
sentence-transformers, ONNX, RAG, similarité cosinus, embeddings
multilingues, recherche interlingue

1. Introduction

Les applications basées sur les grands modeéles de langage (LLM) ont
fréequemment besoin de retrouver des documents pertinents avant de géné-
rer une réponse, un patron connu sous le nom de génération augmentée par
récupération (RAG) [1]. L’étape de récupération nécessite une structure de
données efficace capable, & partir d’'une phrase de requéte, de retourner les
k documents les plus sémantiquement similaires en temps sous-linéaire. Les
bases de données vectorielles remplissent ce role en stockant des représenta-
tions vectorielles de haute dimension du texte et en répondant & des requétes
de plus proches voisins.

ChromaDB'! est une base de données vectorielle open-source et embar-
quable, écrite en Python et en Rust. Sa caractéristique distinctive pour les
débutants est un pipeline d’embedding sans configuration : un seul appel a
collection.add(documents=...) tokenise automatiquement le texte, exé-
cute un modele transformeur, normalise les vecteurs résultants et les indexe,
le tout sans que l'utilisateur ait & télécharger un modele ou écrire du code de
machine learning.

Cet article répond a trois questions :

1. Que se passe-t-il, étape par étape, quand ChromaDB convertit une
phrase en vecteur ?

2. Comment ces vecteurs sont-ils stockés et recherchés efficacement ?
3. Comment écrire un programme RAG complet et fonctionnel ?

Les sources et scripts sont disponibles : https://github.com/bluel01
010/chromadb-article/tree/main

1. https://www.trychroma.com

https://github.com/blue101010/chromadb-article/tree/main
https://github.com/blue101010/chromadb-article/tree/main
https://www.trychroma.com

2. Notions préliminaires

2.1. Embeddings de mots et de phrases

Un embedding? est une application f: 7 — R qui envoie un texte de
longueur variable ¢t € T vers un vecteur réel de dimension fixe d.

A%

Sif =90 = cos(f) =0

(textes indépendants)

Si 0 petit = cos(f) =~ 1
(textes similaires)

FIGURE 1 — Interprétation géométrique de la similarité cosinus : cos(6) mesure ’angle entre
deux vecteurs. Plus 'angle est petit, plus cos(f) est proche de 1 (textes similaires). Les
longueurs ||lul| et ||v|| au dénominateur normalisent le résultat pour que seule la direction
compte.

De bons embeddings placent les textes sémantiquement proches a faible
distance et les textes dissemblables a grande distance, ou « proche » est
mesuré par une fonction de distance ou de similarité telle que la similarité
cosinus :

d
E U; V4
i=1

os(W V) = v = T | W

2 2
PP

=1 =1

2. embedding En francais : plongement ou représentation vectorielle. Le terme anglais
est couramment utilisé dans la littérature technique.

Cette formule mesure ’angle entre deux vecteurs. Une valeur proche de 1
signifie que les vecteurs pointent dans la méme direction (textes trés simi-
laires), tandis qu’une valeur proche de 0 indique des directions perpendicu-
laires (textes sans rapport). La normalisation par les longueurs ||u|| et ||v||
garantit que seule la direction compte, pas la magnitude.
Le numérateur (u-v) mesure a quel point les vecteurs vont dans la méme di-
rection. Le dénominateur normalise ce résultat par les longueurs des vecteurs,
de sorte que des phrases longues et courtes ayant le méme sens obtiennent le
méme score de similarité.

ChromaDB stocke la distance cosinus, définie comme 1 — cos(u,v), de
sorte que les valeurs plus petites indiquent une similarité plus élevée.

2.2. Encodeurs transformeurs et BERT

Le modéle all-MiniLM-L6-v2 utilisé par la fonction d’embedding par dé-
faut de ChromaDB est un encodeur BERT distillé [2] avec 6 couches trans-
formeur, 12 tétes d’attention et une taille cachée de 384. Il a été entrainé
avec un objectif contrastif sur plus d’un milliard de paires de phrases pour
produire des embeddings de phrases sémantiquement significatifs.

Chaque couche transformeur applique de I'auto-attention multi-tétes 3
suivie d’un réseau feed-forward :

. QK"
Attention(Q, K, V') = softmax V. (2)
vy,
ot dj, = 384/12 = 32 est la dimension par téte. La sortie de la derniére couche
est une matrice H € R™3% ol n est la longueur de la séquence.

2.3. Index HNSW

Hierarchical Navigable Small World (HNSW) [3] est un algorithme de re-
cherche approximative de plus proches voisins basé sur un graphe. Il construit
un graphe multi-couches o :

— La couche du bas contient tous les vecteurs.

3. Auto-attention : mécanisme qui calcule, pour chaque mot, une représentation pon-
dérée de tous les autres mots de la phrase. Multi-tétes : ce calcul est effectué 12 fois
en parallele avec des paramétres différents, capturant différents types de dépendances lin-
guistiques. Feed-forward : réseau de neurones appliqué indépendamment & chaque position
pour transformer les représentations.

— Chaque couche supérieure est un sous-ensemble aléatoire de la couche
inférieure.
— Les arétes connectent chaque noeud a ses M plus proches voisins dans
cette couche.
Une requéte commence a la couche la plus haute et descend de maniére glou-
tonne en affinant I’ensemble de candidats a chaque couche. Les paramétres
clés sont M (max_neighbors), ef _construction et ef_search, tous confi-
gurés par défaut par ChromaDB (Tableau 2).

3. Vue d’ensemble de ’architecture

La Figure 2 montre le flux de données complet depuis le texte brut jus-
qu’aux résultats de requéte. Le pipeline se compose de cing étapes, chacune
détaillée en Section 5.

Texte brut : "L’expédition standard nationale..."

v

[1. Tokenisation } - 7>1 IDs de tokens

[101,2035,...,102] !

BertTokenizer :\
2. Transformeur >§ ~ états cachés |
MiniLM-L6-v2 (ONNX) | H e R¥0x384 |
3. Mean Pooling | ;*\;e;:tieh} 7d7eip7hirés7eﬂ;
pondéré par attention 1‘ __e€]Rf’gi]
N " vecteur unitaire
4. Normalisation L2 | ----% 4 e = 1]

LA

[5. Index HNSW }

distance cosinus

v

Indexé et recherchable

FIGURE 2 — Pipeline d’embedding par défaut de ChromaDB, du texte brut au vecteur
indexé. Chaque boite numérotée correspond & une étape décrite en Section 5.

4. Un exemple complet fonctionnel

Nous commengons par le programme complet, puis décortiquons chaque
partie.

4.1. Le jeu de données : polictes. txt

Notre jeu de données est un fichier texte de 56 lignes, chacune contenant
une phrase de la politique d’expédition et de retours d’une entreprise e-
commerce fictive. Les trois premiéres lignes sont :

All garments are inspected for quality before being
packaged for shipment

Standard domestic shipping takes 3-5 business days

Expedited domestic shipping delivers within 1-2
business days

Listing 1 — Trois premiéres lignes de policies.txt.

4.2. Indexation des documents

Le Listing 2 montre le programme d’indexation complet.

import chromadb
import uuid

1. Créer un client éphémére (en mémoire)
client = chromadb.Client ()

2. Créer une collection (comme wune "table" pour
vecteurs)
collection = client.create_collection(name="policies")

3. Lire les phrases de politique
with open("policies.txt", "r", encoding="utf-8") as f:
policies: list[str] = f.read().splitlines()

4. Ajouter les documents -- les embeddings sont calculé
s automatiquement
collection.add(
ids=[str(uuid.uuid4()) for
documents=policies,

in policies],

N

18 metadatas=[{"line": line} for line in range (len(
policies))],

21 # 5. Inspecter les 10 premiers enregistrements
> print (collection.peek())

Listing 2 — Programme d’indexation minimal ChromaDB (main.py).

L’exécution de ce programme produit la sortie du Listing 3, ou chaque
document a été transformé en vecteur de 384 dimensions.

{
>ids?: [20d07bf7e-...°, ’bl7bedb6-...°, ...],
>embeddings’: array ([
[-7.539e-02, 4.958e-02, 1.364e-02, ...,
-1.041e-01, 7.627e-02, -1.993e-02], # doc 0
[1.046e-02, -3.367e-02, 3.771e-02, ...,
-3.124e-02, -2.690e-03, 4.416e-02], # doc 1
1, shape=(10, 384)),
>documents’: [
>All garments are inspected ...7,
’Standard domestic shipping ...7,
I
‘metadatas’: [{’line’: 0}, {’line’: 1}, ...]
}

Listing 3 — Sortie abrégée de collection.peek().

4.8. Interrogation : recherche sémantique

1 results = collection.query(

2 query_texts=["How long does shipping take?"],
3 n_results=3,

1)

5 for doc, dist in zip(results["documents"][0],

6 results["distances"][0]):

7 print (£" [{dist:.4f}] {doc[:80]}...")

Listing 4 — Interrogation de la collection pour trouver des documents similaires.

[0.2891] Standard domestic shipping takes 3-5
business days after your order

[0.3312] Expedited domestic shipping delivers
within 1-2 business days for orders

[0.4718] International shipping is available to
over 200 destinations, with transit

Listing 5 — Résultats : top-3 par distance cosinus (plus petit = meilleur).

Le texte de la requéte est transformé en embedding via le méme pipeline
que les documents. L’index HNSW retourne ensuite les trois vecteurs les plus
proches par distance cosinus.

5. Décorticage du pipeline d’embedding

Lorsque l'utilisateur appelle collection.add(documents=...), Chro-
maDB détecte qu’aucune embedding_function n’a été fournie et utilise par
défaut DefaultEmbeddingFunction, qui déléegue a ONNXMinilLM_L6_V2. Nous
tragons maintenant chaque étape interne.

5.1. Etape 1 : téléchargement et mise en cache du modéle

Lors de la premiére utilisation, le modéle est téléchargé depuis un bucket
S3 et mis en cache localement :

~/.cache/chroma/onnx_models/all-MinilLM-L6-v2/onnx/

Le cache contient quatre fichiers :

TABLE 1 — Fichiers dans le répertoire du modéle ONNX en cache.

Fichier Taille Role

model.onnx ~90Mo Poids du transformeur (format ONNX)
tokenizer.json ~700Ko Vocabulaire et régles BertTokenizer
config. json <1Ko Hyperparamétres de ’architecture
vocab.txt ~230Ko 30522 tokens WordPiece

5.2. Etape 2 : tokenisation
Le tokeniseur est un BertTokenizer chargé depuis tokenizer. json via la
bibliothéque Hugging Face tokenizers. Il effectue :
1. Mise en minuscules : tout le texte est converti en minuscules.
2. Découpage WordPiece : les mots sont découpés en sous-tokens issus
d’un vocabulaire de 30522 entrées.
3. Insertion de tokens spéciaux : [CLS] est ajouté au début, [SEP]
a la fin.
4. Troncature : les séquences de plus de 256 tokens sont tronquées.

5. Rembourrage (padding) : les séquences de moins de 256 tokens
sont complétées & droite avec [PAD] (ID 0).

from tokenizers import Tokenizer
import os

Charger le méme tokeniseur que ChromaDB

cache = os.path.expanduser (
"~/.cache/chroma/onnx_models/"
"all-MinilM-L6-v2/onnx"

)
tok = Tokenizer.from_file(

os.path. join(cache, "tokenizer.json")
)

tok.enable_truncation(max_length=256)
tok.enable_padding (pad_id=0, pad_token="[PAD]",
length=256)

text = "Standard domestic shipping takes 3-5 days"
enc = tok.encode(text)

print (enc.ids [:15])

[101, 3115, 4968, 6554, 3138, 1017, 1011, 1019,
2420, 102, 0, 0, 0, 0, 0]

print (enc.attention_mask [:15])

(1, 1, 1, 1, 1, !, 1, 1, 1, 1, O, O, 0, 0, 0]

Listing 6 — Reproduction manuelle de I’étape de tokenisation.

Le attention_mask distingue les vrais tokens (1) du rembourrage (0). Ce
masque est essentiel pour le mean pooling (Etape 4).

9

5.3. Etape 3 : passe avant du transformeur

Les entrées tokenisées sont passées a la session d’inférence ONNX Run-

time :

import numpy as np
import onnxruntime as ort

session = ort.InferenceSession(
os.path. join(cache, "model.onnx")
)
onnx_input = {
"input_ids": np.array([enc.ids],
dtype=np.int64),
"attention_mask": np.array([enc.attention_mask],
dtype=np.int64),
"token_type_ids": np.zeros((1, 256),
dtype=np.int64),
}
output = session.run(None, onnx_input)

last_hidden = output[0] # shape: (1, 256, 384)
print (last_hidden.shape)
(1, 256, 384)

Listing 7 — Inférence ONNX Runtime (simplifiée depuis le code source de ChromaDB).

Le tenseur de sortie H € R1*256x384

pour chaque position de token.

5.4. Etape 4 : mean pooling

contient un vecteur de 384 dimensions

Un embedding de phrase unique est produit en moyennant les vecteurs de
tokens, mais uniquement sur les vrais tokens (en excluant le rembourrage) :

10

n
E m; h;
i=1

e=———,
> m
i=1

ou h; € R3* est P'état caché a la position 7 et m; € {0,1} est le masque
d’attention.

! (3)

mask = np.array([enc.attention_mask], dtype=np.float32)
mask_expanded = np.broadcast_to (
np.expand_dims (mask, -1), last_hidden.shape

embedding = np.sum(
last_hidden * mask_expanded, axis=1
) / np.clip(
mask_expanded.sum(axis=1), a_min=1e-9, a_max=None

)
print (embedding.shape) # (1, 38/)

Listing 8 — Implémentation du mean pooling (issue du code source de ChromaDB).

5.5. Etape 5 : normalisation L2

L’embedding est normalisé a longueur unitaire afin que le produit scalaire
soit égal a la similarité cosinus :

4. Mean pooling pondéré : moyenne arithmétique des états cachés h;, ot le masque
m; € {0,1} exclut les tokens de rembourrage. Pour une phrase de 10 mots réels + 246
tokens [PAD], seuls les 10 premiers vecteurs contribuent a la moyenne. Cette opération
condense une séquence de longueur variable en un embedding de taille fixe.

5. Cette normalisation raméne tous les vecteurs a une longueur unitaire (comme des
points sur une sphére de rayon 1), de sorte que seule leur direction compte. Cela rend la
comparaison indépendante de la longueur du texte original.

11

Interprétation : on divise chaque dimension du vecteur e par sa longueur
totale ||e||2, obtenant un vecteur € de longueur exactement 1. Cela garantit
que deux phrases longues et courtes ayant le méme sens seront considérées
comme identiques, car seule leur direction dans [’espace compte, pas leur
magnitude.

Aprés normalisation, ||é|| = 1, ce qui signifie que cos(a, V) =10 - V.
norm = np.linalg.norm(embedding, axis=1, keepdims=True)
norm = np.maximum(norm, le-12)
embedding_normed = embedding / norm

print (np.linalg.norm(embedding_normed))
1.0000001 (précision float32)

Listing 9 — Normalisation L2.

Explication ligne par ligne de la normalistion L2 :

— Ligne 1 : Calcule la longueur euclidienne du vecteur (norme L2) :
lella = V/e? + €2+ ... + e2,. Le paramétre axis=1 calcule la norme
pour chaque ligne (document) séparément.

— Ligne 2 : Evite la division par zéro en garantissant que la norme est
au minimum 107!2. Cela protége contre le cas improbable dun vecteur
nul.

— Ligne 3 : Divise chaque dimension du vecteur par sa norme totale.
(’est 'opération & = e/||e||2 de 'Equation 4.

— Ligne 5 : Vérifie que le vecteur normalisé a bien une longueur de 1
(avec la légére imprécision numérique du format float32).

Le vecteur résultant de 384 valeurs float32 est ce que ChromaDB stocke

et indexe.

6. L’index HNSW

Aprés la génération de I'embedding, les vecteurs sont insérés dans un
graphe HNSW [3]|. Le Tableau 2 liste les parameétres par défaut de Chro-
maDB.

12

10

11

TABLE 2 — Paramétres HNSW par défaut dans ChromaDB.

Paramétre Défaut Signification

space cosine Métrique de distance
ef_construction 100 Largeur de faisceau a la construction
max_neighbors (M) 16 Arétes par noeud

ef_search 100 Largeur de faisceau a la recherche
num_threads nb CPU Threads paralléles

Insertion.. Lorsqu'un nouveau vecteur € est ajouté, HNSW :
1. L’affecte a une couche aléatoire ¢ (distribution géométrique).

2. En partant du point d’entrée a la couche la plus haute, trouve glou-
tonnement le plus proche voisin & chaque couche jusqu’a /.

3. Aux couches ¢ & 0, connecte le nouveau nceud a ses M plus proches
voisins en élaguant les arétes les plus longues.

Recherche.. Etant donné un vecteur de requéte q, HNSW parcourt depuis la
couche supérieure vers le bas en maintenant une liste dynamique de candi-
dats de taille ef_search. A la couche du bas, les k meilleurs candidats sont
retournés. La complexité est O(log N) par requéte pour N vecteurs, contre
O(N) en force brute.

7. Assemblage complet : un exemple de récupération RAG

Le Listing 10 montre un programme de récupération complet qu'un chat-
bot basé sur un LLM pourrait utiliser pour répondre aux questions des clients.

import chromadb
import uuid

--- Phase d’indexzation ---

client = chromadb.Client ()

collection = client.create_collection(
name="policies"

n

r

n
b

with open("policies.txt", encoding="utf-8") as f:
policies = f.read().splitlines ()

13

collection.add(

ids=[str (uuid.uuid4 ()) for

in policies],

documents=policies,

metadatas=[{"1line":

1

)
--- Phase de récupération ---
queries = [

"Can I return swimwear?",

"Do you ship intermnationally?",

"What about carbon emissions?",
]

for q in queries:

results = collection.query(
query_texts=[q]l, n_results=3

)
print (£"\nQuery:

{q}")

for doc, dist, meta in zip(
results ["documents"][0],
results["distances"][0],
results["metadatas"][0],

print (£" [{dist:.4f}] (ligne {metal[’line’]})
f"{doc[:70]}...")

Listing 10 — Exemple complet de récupération RAG.

Query: Can I return swimwear?

[0.4102] (ligne 12)

Swimwear can only be returned

with hygienic liners and all tags intact...
[0.5238] (ligne 10) Returned items must be unworn,
unwashed, and free of odors, stains...
[0.5514] (ligne 11) Footwear must be returned in

the original box,

which should be placed...

Query: Do you ship internationally?

[0.3156] (ligne 3)

International shipping is

available to over 200 destinations...

14

i} for i in range(len(policies))

n

[0.5289] (ligne 4) Customers are responsible for
any local duties, taxes, or import fees...

[0.5834] (ligne 1) Standard domestic shipping takes
3-5 business days after your order...

Query: What about carbon emissions?
[0.2893] (ligne 7) We offset 100 percent of
shipping-related carbon emissions...
[0.5617] (ligne 8) ©Packaging materials are made
from 100 percent recycled or sustainably...
[0.7901] (ligne 0) All garments are inspected for
quality before being packaged...

Listing 11 — Sortie de 'exemple RAG.

Observez comment chaque requéte retrouve les phrases de politique les
plus pertinentes sémantiquement, méme lorsque les mots exacts différent (par
exemple, « carbon emissions » correspond a la politique de compensation
carbone).

8. Comprendre les nombres : anatomie d’un embedding

Chaque embedding est un vecteur dense de 384 nombres a virgule flottante
simple précision IEEE 754. Le Tableau 3 montre des dimensions sélectionnées
pour trois phrases de politique.

TABLE 3 — Dimensions sélectionnées des embeddings pour trois documents. Les valeurs
sont arrondies & trois décimales.

Dim Qualité Livraison Retours
(ligne 0) (ligne 1) (ligne 9)

el —0,075 0,010 —0,021
€9 0,050 —0,034 —0,000
es3 0,014 0,038 0,007
€382 —0,104 —0,031 —0,013
€383 0,076 —0,003 0,016
€384 —0,020 0,044 0,024
el 1,000 1,000 1,000

15

Les dimensions individuelles ne sont pas interprétables par 'humain; le
sens émerge des relations géométriques entre vecteurs. Deux phrases liées a
la livraison auront une faible distance cosinus (~ 0,3), tandis qu'une phrase
de livraison et une phrase de retours auront une distance plus grande (= 0,6).

9. Configuration principale de ChromaDB

Le Tableau 4 résume les valeurs par défaut les plus importantes.

TABLE 4 — Valeurs de configuration par défaut de ChromaDB relatives aux embeddings.

Parameétre Valeur par défaut Notes
Modele d’embedding all-MiniLM-L6-v2 22M parameétres, ONNX
Dimension 384 float32

Tokens max

Taille du vocabulaire
Taille du batch
Métrique de distance
Backend de stockage

256
30522
32
cosinus

Mémoire / SQLite

Tronqué si plus long
WordPiece

Documents par passe avant
1 — cos(u, v)

Ephémeére vs. persistant

9.1. Utiliser une fonction d’embedding personnalisée
ChromaDB permet de remplacer le modéle par défaut :

from chromadb.utils.embedding_functions import (
OpenAIlEmbeddingFunction,

)

ef = OpenAIEmbeddingFunction(

api_key="sk-...

n
>

model _name="text -embedding-3-small",

)

collection = client.create_collection(
name="policies",
embedding_function=ef,

)

collection.add () utilisera maintenant 1’API OpendIl

Listing 12 — Utilisation des embeddings OpenAl au lieu du modéle par défaut.

16

10. Note de compatibilité Python 3.14

A la version 1.4.1 de ChromaDB, I'importation de la bibliothéque sous
Python 3.14 échoue en raison d’un bogue de détection de version de Pydantic
dans chromadb/config.py (issue GitHub #5996)°. La cause racine est que
pydantic.vl, une couche de compatibilité rétroactive, utilise de l'introspec-
tion de métaclasses incompatible avec 1’évaluation différée des annotations
de Python 3.14 (PEP 749). Le correctif nécessite :

1. L’installation de pydantic-settings>2.0.

2. Le remplacement du bloc d’'import dans config.py pour privilégier
pydantic_settings.BaseSettings.

3. L’ajout d’annotations de type & trois champs non annotés
(chroma_coordinator_host, chroma_logservice_host,
chroma_logservice_port).

Un script de patch automatisant ces étapes est disponible dans le dépdt
accompagnant cet article.

11. Embeddings multilingues : étude de cas e-commerce en francais

Le modéle par défaut all1-MiniLM-L6-v2 est entrainé principalement sur
des données anglaises. Pour les corpus non anglophones, le modéle ONNX
intégré a ChromaDB produit des embeddings de mauvaise qualité car le
vocabulaire sous-jacent et la distribution d’entrainement ne couvrent pas bien
les autres langues. Cette section montre comment remplacer le modéle par
défaut par un encodeur de phrases multilingue et démontre deux capacités
puissantes : la recherche sémantique en francais et la recherche interlingue
(requétes en anglais sur un corpus en frangais).

11.1. Pourquoi un modéle multilingue ¢

Le modéle paraphrase-multilingual-MiniLM-L12-v2 [5] a été entrainé
sur des paires de phrases paralléles dans plus de 50 langues a ’aide d’une
procédure de distillation de connaissances : un modeéle enseignant anglais de
haute qualité guide un modéle étudiant multilingue de sorte que des phrases
sémantiquement équivalentes regoivent des vecteurs similaires quelle que soit
la langue. Le Tableau 5 compare les deux modéles.

6. https://github.com/chroma-core/chroma/issues/5996

17

https://github.com/chroma-core/chroma/issues/5996

TABLE 5 — Comparaison du modéle anglais par défaut et du modele multilingue utilisé
dans cette section.

all-MiniLM-L6-v2 paraphrase-multilingual-
MiniLM-L12-v2

Langues Anglais seul 50+

Couches 6 12

Dim. cachée 384 384

Parameétres 22M 118 M

Taille download ~90 Mo ~470 Mo

Moteur d’exéc. ONNX (intégré) Sentence-Transformers (PyTorch)

Le modeéle multilingue utilise la méme dimensionnalité de sortie (384)
que le modéle par défaut, donc la configuration HNSW et les métriques de
distance restent inchangées. La différence clé est que le modéle est chargé via
la bibliothéque sentence-transformers plutdét que par le moteur ONNX
intégré a ChromaDB.

11.2. Création de la fonction d’embedding multilingue

ChromaDB fournit un wrapper SentenceTransformerEmbeddingFunction
qui délégue le calcul des embeddings a la bibliothéque sentence-transformers.
Cela permet d’utiliser n’importe quel modéle du hub Sentence-Transformers .
from chromadb.utils.embedding_functions import (

SentenceTransformerEmbeddingFunction,

)
MODEL_NAME = "paraphrase-multilingual-MinilLM-L12-v2"

Le modele est téléchargé automatiquement au ler appel
(7470 Mo) et mis en cache dans
“/.cache/torch/sentence_transformers/
embedding_fn = SentenceTransformerEmbeddingFunction (
model_name=MODEL_NAME ,
device="cuda" # décommenter pour GPU NVIDIA

7. https://huggingface.co/sentence-transformers

18

https://huggingface.co/sentence-transformers

6

~

Listing 13 — Instanciation de la fonction d’embedding multilingue.

Le premier appel déclenche un téléchargement automatique de ~470 Mo
depuis le hub Hugging Face. Les exécutions suivantes utilisent le cache local
situé dans ~/.cache/torch/sentence_transformers/. Si un GPU compa-
tible CUDA est disponible, passer device="cuda" décharge l'inférence du
transformeur sur le GPU, offrant une accélération significative pour les grands
lots.

11.83. Jeu de données : polices e-commerce en francais

Nous utilisons une traduction frangaise du méme jeu de 56 phrases de
polices e-commerce (polices.txt). Chaque ligne est une phrase de police en
frangais, par exemple :

L’expédition standard nationale prend de 3 a 5 jours
ouvrables aprés le traitement de la commande...

Les maillots de bain ne peuvent &étre retournés que
si les doublures hygiéniques et toutes les
étiquettes sont intactes...

Nous compensons 100 %’ des émissions de carbone liées
a l’expédition en investissant dans des projets
environnementaux et de reforestation vérifiés...

Listing 14 — Lignes sélectionnées de polices.txt (polices en frangais).

11.4. Indexation avec métadonnées par catégorie

Pour enrichir les documents stockés, nous assignons un label de catégorie
a chaque phrase de police a ’aide d’une simple fonction de correspondance
par mots-clés. Ces métadonnées sont stockées aux codtés de I'embedding et
peuvent servir a filtrer les résultats lors de I'interrogation.

import chromadb
import uuid

def _categorize(text: str) -> str:
"""Assigne une catégorie par mots-clés."""
t = text.lower ()
if any(w in t for w in
["livraison", "expédition", "colis"]):

19

9 return "livraison"

10 if any(w in t for w in

L1 ["retour", "rembours", "échange"]):
12 return "retours"

13 if any(w in t for w in

14 ["prix", "promo", "rabais"]):

15 return "tarification"

16 # ... catégories supplémentaires omises

17 return "général"

v client = chromadb.Client ()

21 collection = client.create_collection(
22 name="polices_fr",

23 embedding_function=embedding_£fn,

24 metadata={"hnsw:space": "cosine"},
25)

27 with open("polices.txt", "r", encoding="utf-8") as f:
28 polices = [l.strip() for 1 in f
29 if l.strip()]

31 collection.add/(

32 ids=[str (uuid.uuid4 ()) for
33 documents=polices,

34 metadatas=[{

in polices],

35 "ligne": i,
36 "categorie": _categorize(doc),
37 "langue": "fr",
38 } for i, doc in enumerate(polices)],
39)
Listing 15 — Catégorisation par mots-clés et indexation des polices francaises

main_fr_polices. .
p Py

Le dictionnaire metadata sur la collection fixe la métrique de distance
HNSW a cosinus (la valeur par défaut, rendue explicite ici pour la clarté).
Les métadonnées de chaque document incluent son numéro de ligne, la ca-
tégorie assignée automatiquement et un tag de langue. ChromaDB sup-
porte les filtres where sur les métadonnées, de sorte qu’'une application en

20

aval pourrait restreindre la recherche a une catégorie spécifique (par ex.,
where={"categorie": "livraison"}).

11.5. Recherche sémantique en francais

Avec les documents francais indexés, nous effectuons des requétes séman-
tiques entierement en francais. Le modeéle multilingue projette a la fois les
requétes et les documents dans le méme espace de 384 dimensions, de sorte
que la distance cosinus refléte la similarité sémantique quelle que soit la
langue.

requetes = [
"Combien de temps prend la livraison 7",
"Est-ce que je peux retourner un maillot"'

" de bain 7",

"Comment fonctionne le programme de'"

" fidélitée 7",

"Les articles en solde sont-ils"

" échangeables 7",

]
for query in requetes:
results = collection.query(
query_texts=[query],
n_results=5,
)
print (f"Requéte : {queryl}")
for doc, dist, meta in zip(
results ["documents"][0],
results["distances"][0],
results["metadatas"][0],
) 8
print (£" [{dist:.4f}] "
f"({metal[’categorie’]}) "
f"{doc[:80]1}...")
Listing 16 — Interrogation de la collection frangaise avec des questions en frangais.
Requéte : Combien de temps prend la livraison 7

[0.2134] (livraison) L’expédition standard
nationale prend de 3 a 5 jours ouvrables...

21

[0.2987] (livraison) L’expédition express
nationale livre sous 1 & 2 jours ouvrables...
[0.4256] (livraison) La livraison internationale

est disponible vers plus de 200 destinations...

Listing 17 — Résultats sélectionnés pour la requéte francaise « Combien de temps prend
la livraison 7 ».

Les distances cosinus sont comparables & celles obtenues avec le modéle
anglais sur des données anglaises (Section 4.3), confirmant que le modéle
multilingue atteint une qualité discriminative similaire en francais.

11.6. Recherche interlingue : requétes en anglais sur des documents frangais

La capacité la plus remarquable d’'un modeéle d’embedding multilingue
est sans doute la recherche interlingue : interroger dans une langue et retrou-
ver des documents écrits dans une autre. Parce que le modéle a été entrainé
sur des corpus paralléles, des phrases sémantiquement équivalentes dans des
langues différentes sont projetées vers des points voisins dans I'espace d’em-
bedding.

queries_en = [
"How long does shipping take?",
"Can I return swimwear?",
"What is your carbon offset policy?",

for query in queries_en:

results = collection.query(
query_texts=[query],
n_results=3,

)

print (f"Query (EN): {queryl}")

for doc, dist in zip(
results ["documents"][0],
results["distances"][0],

print (£" [{dist:.4f}] {doc[:80]1}...")

Listing 18 — Recherche interlingue : requétes en anglais sur des documents francais.

Query (EN): How long does shipping take?

22

[0.3356] L’expédition standard nationale prend
de 3 & 5 jours ouvrables...

[0.4238] Nous offrons un délai de retour de
30 jours & compter de la date de livraison...

[0.4249] L’expédition express nationale livre
sous 1 a 2 jours ouvrables...

Query (EN): Can I return swimwear?
[0.5243] Les maillots de bain ne peuvent &étre
retournés que si les doublures hygiémniques...
[0.7104] Les articles retournés doivent &tre non
portés, non lavés et exempts d’odeurs...
[0.7357] Nous offrons un délai de retour de
30 jours a compter de la date de livraison...

Query (EN): What is your carbon offset policy?
[0.4542] Nous compensons 100 %% des émissions de
carbone liées a 1’expédition en investissant...
[0.6586] Nous pouvons mettre & jour ces politiques
périodiquement. ..
[0.6924] Les commandes de plus de 75 dollars sont
admissibles & la livraison standard gratuite...

Listing 19 — Résultats interlingues : des requétes en anglais retrouvent des documents
francgais pertinents.

La requéte anglaise « How long does shipping take ? » retrouve correcte-
ment la phrase frangaise sur les délais de livraison standard avec une distance
cosinus de seulement 0,3356 — démontrant que le modéele place des phrases
sémantiquement équivalentes dans des langues différentes trés proches dans
I’'espace d’embedding.

23

11.7. Discussion

Cet exemple multilingue met en lumiére trois legons pratiques pour la
construction de systémes RAG sur du texte non anglophone :

1. Le choix du modéle est déterminant. Le modele ONNX par dé-
faut est exclusivement anglais. Pour les corpus multilingues,
SentenceTransformerEmbeddingFunction avec un modéle tel que
paraphrase-multilingual-MiniLM-L12-v2 est un remplacement di-
rect qui ne nécessite qu'un seul argument supplémentaire.

2. La recherche interlingue est gratuite. Une fois un modéle mul-
tilingue utilisé, la recherche anglais«+frangais (et tout autre couple
de langues supporté) fonctionne immédiatement — aucun pipeline de
traduction n’est nécessaire.

3. L’enrichissement par métadonnées est orthogonal. Les filtres
de métadonnées de ChromaDB (par ex., where={"categorie": "livraison"})
peuvent étre combinés avec la recherche sémantique quel que soit le
modeéle d’embedding, permettant des stratégies de recherche hybrides
mélant signaux par mots-clés et signaux sémantiques.

Le compromis est le cotit d’exécution : le modéle multilingue & 12 couches
est environ 2x plus lent que le modeéle anglais & 6 couches sur CPU. Pour
les applications sensibles a la latence, 'inférence GPU (device="cuda") ou
le modéle plus léger distiluse-base-multilingual-cased-v2 (512 dimen-
sions) peuvent étre préférables.

12. Résumé et lectures complémentaires

Cet article a retracé le cycle de vie complet d’'un document dans Chro-
maDB :

1. Le texte brut est tokenisé en sous-tokens WordPiece.

2. Les tokens passent par un transformeur BERT a 6 couches exé-
cuté dans ONNX Runtime, produisant des états cachés de 384 dimen-
sions pour chaque position de token.

3. Les états cachés sont agrégés par mean pooling (pondéré par le
masque d’attention) pour condenser la séquence en un seul vecteur.

4. Le vecteur est normalisé L2 a longueur unitaire.

24

5. Le vecteur unitaire est inséré dans un graphe HNSW qui supporte
des requétes approximatives de plus proches voisins en O(log N) par
distance cosinus.

Nous avons également montré que le modéle anglais par défaut peut étre
remplacé par un encodeur de phrases multilingue
(paraphrase-multilingual-MinilM-L12-v2) via
SentenceTransformerEmbeddingFunction, permettant la recherche séman-
tique en frangais et la recherche interlingue ou des requétes en anglais
retrouvent correctement des documents francais — sans aucun pipeline de
traduction.

Pour approfondir, nous recommandons :

— La documentation Sentence-Transformers® pour entrainer des mo-

déles d’embedding personnalisés.

— L’article HNSW [3] pour les garanties théoriques de 'index.

— La documentation ChromaDB? pour les patrons de déploiement en

production (stockage persistant, authentification, mode distribué).

8. https://www.sbert.net
9. https://docs.trychroma.com

25

https://www.sbert.net
https://docs.trychroma.com

Références

1]

2l

3]

4]

[5]

(6]

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W. Yih, T. Rocktéaschel, S. Riedel et D. Kiela,
« Retrieval-augmented generation for knowledge-intensive NLP tasks »,
dans Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, 2020, p. 9459-9474. arXiv :2005.11401. [En ligne|]. Disponible :
https://arxiv.org/abs/2005.11401

W. Wang, F. Wei, L. Dong, H. Bao, N. Yang et M. Zhou, « MiniLM : Deep
self-attention distillation for task-agnostic compression of pre-trained
transformers », dans Advances in Neural Information Processing Sys-
tems, H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan et H. Lin,
Ed. Curran Associates, Inc., vol. 33, 2020, p. 5776-5788. Disponible :
https://arxiv.org/abs/2002.10957

Y. A. Malkov et D. A. Yashunin, « Efficient and robust approximate nea-
rest neighbor search using Hierarchical Navigable Small World graphs
», IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, n°® 4, p. 824-836, 2020. doi : 10.1109/TPAMI.2018.2889473.
arXiv :1603.09320. |[En ligne]. Disponible : https://arxiv.org/abs/
1603.09320

J. Devlin, M.-W. Chang, K. Lee et K. Toutanova, « BERT : Pre-training
of deep bidirectional transformers for language understanding », dans
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics : Human Language Tech-
nologies (NAACL-HLT), vol. 1, 2019, p. 4171-4186. arXiv :1810.04805.
[En ligne|. Disponible : https://aclanthology.org/N19-1423/

N. Reimers et I. Gurevych, « Sentence-BERT : Sentence embeddings
using Siamese BERT-networks », dans Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, p. 3982-3992. arXiv :1908.10084. [En ligne|. Disponible :
https://aclanthology.org/D19-1410/

J. Lovejoy, A. Sanchez et al., « Chroma : The Al-native open-source
embedding database », Logiciel open-source, 2023. [En ligne|. Disponible :
https://www.trychroma.com

26

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://aclanthology.org/N19-1423/
https://aclanthology.org/D19-1410/
https://www.trychroma.com

[7] Microsoft, « ONNX Runtime : Cross-platform, high performance ML in-
ferencing and training accelerator », Version 1.16, 2024. [En ligne|. Dis-
ponible : https://github.com/microsoft/onnxruntime

[8] A. Moi et al., « Tokenizers : Fast state-of-the-art tokenizers for modern
NLP pipelines », Hugging Face, 2020. [En ligne|. Disponible : https:
//github.com/huggingface/tokenizers

[9] N. Reimers et I. Gurevych, « Sentence-Transformers : Python framework
for state-of-the-art sentence, text and image embeddings », 2019. [En
ligne|. Disponible : https://www.sbert.net

27

https://github.com/microsoft/onnxruntime
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://www.sbert.net

	Introduction
	Notions préliminaires
	Embeddings de mots et de phrases
	Encodeurs transformeurs et BERT
	Index HNSW

	Vue d'ensemble de l'architecture
	Un exemple complet fonctionnel
	Le jeu de données : policies.txt
	Indexation des documents
	Interrogation : recherche sémantique

	Décorticage du pipeline d'embedding
	Étape 1 : téléchargement et mise en cache du modèle
	Étape 2 : tokenisation
	Étape 3 : passe avant du transformeur
	Étape 4 : mean pooling
	Étape 5 : normalisation L2

	L'index HNSW
	Assemblage complet : un exemple de récupération RAG
	Comprendre les nombres : anatomie d'un embedding
	Configuration principale de ChromaDB
	Utiliser une fonction d'embedding personnalisée

	Note de compatibilité Python 3.14
	Embeddings multilingues : étude de cas e-commerce en français
	Pourquoi un modèle multilingue ?
	Création de la fonction d'embedding multilingue
	Jeu de données : polices e-commerce en français
	Indexation avec métadonnées par catégorie
	Recherche sémantique en français
	Recherche interlingue : requêtes en anglais sur des documents français
	Discussion

	Résumé et lectures complémentaires

